Maximum boundaries for cones of continuous functions on a compact space and integral representations for linear functionals

Foo Chui Chen and Walter Roth*
Department of Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam
*corresponding author email: walter.roth@ubd.edu.bn

Abstract

We present a simplified and easily accessible approach to the integral representation for continuous linear functionals on a cone of continuous real-valued functions on a compact set. The measures defining these integrals are supported by the maximum boundary of the respective cones.

Index Terms: spaces and cones of continuous functions, integral representation

1. Introduction

The concept of a maximum boundary for an algebra of continuous functions on a compact space was first proposed by Georgii Šilov in 1964 [6]. It was later generalized to vector spaces of continuous functions not necessarily closed for multiplication using rather demanding and complicated techniques from Choquet theory (see [1], [4] and [2]). These also generate our results concerning integral representations for continuous linear functionals on these spaces. We offer a much simplified and more easily accessible approach in this paper while also generalizing the concepts from linear spaces to cones of continuous functions.

2. Maximum Boundaries

Let X be a compact Hausdorff space and $C(X)$ the Banach space of all continuous functions on X endowed with the maximum norm, that is

$$
\|f\|=\max \{\mid f(x) \| x \in X\} .
$$

for $f \in C(X)$. A non-empty subset H of $C(X)$ is a called a subcone of $C(X)$ if

$$
f+g \in H \quad \text { and } \quad \alpha f \in H,
$$

whenever $f, g \in H$, and $\alpha \geq 0$. Linear subspaces are of course subcones in this sense. For a function
$f \in C(X)$ and a closed subset Y of X we abbreviate

$$
\max (f, Y)=\max \{|f(x)| \| x \in Y\}
$$

Given a subcone H of $C(X)$, a closed subset Y of X is called a (maximum) boundary for H if

$$
\max (f, Y)=\max (f, X)
$$

holds for all $f \in H$, that is if all functions in H attain their maximum value on Y. If H is indeed a linear subspace of $C(X)$, then the functions in H also take their minimum values on Y, since a function $f \in H$ takes its minimum value where $-f \in H$ takes its maximum value. We shall use Zorn's Lemma to prove that for every subcone of $C(X)$ there is a minimal boundary $B \subset X$ of this type. Minimality means that $B=Y$ whenever Y is a boundary for H such that $Y \subset B$.

Proposition. 2.1. For every subcone H of $C(X)$ there exists a minimal boundary $B \subset X$.

Proof: Let \mathcal{B} denote the (non-empty) collection of all boundaries for H, ordered by set inclusion and let \mathfrak{C} be a downward chain in \mathcal{B}. We shall verify that

$$
C_{0}=\bigcap\{C \in \mathfrak{C}\}
$$

is a lower bound for \mathfrak{C} in \mathcal{B}. Indeed, C_{0} is closed in X and a subset of all sets in \mathfrak{C}. For a function $f \in H$ let

$$
Y_{f}=\{y \in X \mid f(y)=\max (f, X)\}
$$

This is a non-empty compact subset of X, and $Y_{f} \cap$ $B \neq \emptyset$ for every boundary $B \in \mathcal{B}$. If we had $Y_{f} \cap$ $C_{0}=\emptyset$, then we would have $Y_{f} \cap C=\emptyset$ for some $C \in \mathfrak{C}$ by the finite intersection property of closed sets in a compact space. Thus $Y_{f} \cap C \neq \emptyset$ and

$$
\max \left(f, C_{0}\right)=\max (f, X)
$$

Thus $C_{0} \in \mathfrak{C}$ as claimed. Following Zorn's Lemma, \mathcal{B} then contains a minimal element.

A minimal boundary of a subcone is, however, not necessarily unique, as the following example will show.

Example 2.2. Let $X=[-1,+1]$ and let H be the subspace of all even functions in $C([-1,+1])$, that is

$$
H=\{f \in C(X) \mid f(x)=f(-x) \text { for all } x \in X\} .
$$

Then $B=[0,1]$ is a minimal boundary for H. Indeed, every function $f \in H$ obviously takes its maximum (and minimum) value on B. On the other hand, if Y is a closed subset of B such that $Y \neq B$, then the open complement Y^{c} of Y contains a point $0 \leq x \in B$ and its negative $-x$, and there is $\varepsilon>0$ such that both intervals $(x-$ $\varepsilon, x+\varepsilon)$ and $(-x-\varepsilon,-x+\varepsilon)$ are contained in Y^{c}. There is $f \in C([-1,+1])$ such that $f(x)=1$ and $f(y)=0$ for all $y \notin(x-\varepsilon, x+\varepsilon)$. The function

$$
y \rightarrow f(y)+f(-y)
$$

is in H and attains its maximum value outside Y. Thus Y is not a boundary for H. A similar argument shows that $B^{\prime}=[-1,0]$ is also a minimal boundary for H, and these boundaries are therefore not unique in this case.

This deficit can however be remedied if we impose an additional assumption on the subcone H of $C(X)$. We shall say that H (symmetrically) separates the points of X if for any two distinct
points $x, y \in X$ there is a function $f \in H$ such that $f(x)<f(y)$. Note that for a vector subspace H this notion coincides with the usual one, that is: for any two distinct points $x, y \in X$ there is a function $f \in H$ such that $f(x) \neq f(y)$.

Lemma. 2.3. Let H be a subcone of $C(X)$ which separates the points of X.
(a) For any two distinct points $x, y \in X$ and $\alpha \in$ \mathbb{R} there is a function $f \in H$ such that $f(y)=$ $f(x)+\alpha$.
(b) For a compact subset K of X and $x \in X \backslash K$ there are functions $f_{1}, \ldots, f_{n} \in H$ such that the open neighborhood of x

$$
U=\left\{y \in X \mid f_{i}(y)<f_{i}(x)+1 \text { for } i=1, \ldots, n\right\}
$$ is disjoint from K.

Proof: (a) Let x and y be distinct points of X and $\alpha \in \mathbb{R}$. Since H separates the points of X we can choose a function $h \in H$ such that either $h(x)<$ $h(y)$, in the case that $\alpha \geq 0$, or $h(x)>h(y)$, in the case that $\alpha<0$. The function

$$
f=\frac{\alpha}{h(y)-h(x)} h \in H
$$

has the required property.
(b) Let K be a compact subset of X and $x \in X \backslash K$. For every $y \in K$ there is by Part (a) a function $f_{y}(y)=f_{y}(x)+2$. Set

$$
U_{y}=\left\{z \in X \mid f_{y}(z)>f_{y}(x)+1\right\}
$$

The family $\left(U_{y}\right)_{y \in K}$ forms an open cover for K and therefore contains a finite subcover U_{1}, \ldots, U_{n} corresponding to the functions $f_{1}, \ldots, f_{n} \in H$. These functions satisfy the claim of Part (b). Indeed, the open set

$$
U=\left\{y \in X \mid f_{i}(y)<f_{i}(x)+1 \text { for } i=1, \ldots, n\right\}
$$

contains the point x and is disjoint from K, since for every $y \in K$ at least one of the functions f_{i} has the property that $f_{i}(y)>f_{i}(x)+1$.

Proposition. 2.4. For a subcone H of $C(X)$ which separates the points of X there exists a unique
minimal boundary B, that is every other boundary for H contains B.

Proof: We have to verify only uniqueness. Let B be a minimal boundary for H and let Y be a second boundary. Let us assume to the contrary of our claim that $B \not \subset Y$. Then there is $x_{0} \in B \backslash Y$. Following Lemma 3 (b) there are $f_{1}, \ldots, f_{n} \in H$ such that

$$
U=\left\{y \in X \mid f_{i}(y)<f_{i}\left(x_{0}\right)+1 \text { for } i=1, \ldots, n\right\}
$$

contains x_{0} and is disjoint from Y. The set

$$
B \backslash U=B \cap(X \backslash U)
$$

is closed and is a proper subset of B, since it does not contain $x_{0} \in B$. Therefore due to the minimality of B it is not a boundary for H. Thus we can find a function $f \in H$ such that

$$
\max (f, B \backslash U)<\max (f, X)
$$

On the other hand since Y is a boundary for H we can find $y \in Y$ such that

$$
f(y)=\max (f, X)
$$

and since $y \notin U$ there is $k \in\{1, \ldots, n\}$ such that $f_{k}(y) \geq f_{k}\left(x_{0}\right)+1$. Next we choose $\alpha \geq 0$ and consider the function $g=\alpha f+f_{k} \in H$.

If $x \in U$ then

$$
\alpha f(x)+f_{k}(x)<\alpha \max (f, X)+f_{k}\left(x_{0}\right)+1 .
$$

If $x \in B \backslash U$, then

$$
\alpha f(x)+f_{k}(x) \leq \alpha \max (f, B \backslash U)+\max \left(f_{k}, X\right)
$$

Thus if we choose $\alpha \geq 0$ such that

$$
\begin{aligned}
\alpha(\max (f, X) & -\max (f, B \backslash U)) \\
& >\max \left(f_{k}, X\right)-f_{k}\left(x_{0}\right)-1
\end{aligned}
$$

then we have

$$
\alpha f(x)+f_{k}(x)<\alpha \max (f, X)+f_{k}\left(x_{0}\right)+1
$$

for all $x \in B$, and hence

$$
\begin{gathered}
\max \left(\alpha f+f_{k}, X\right)=\max \left(\alpha f+f_{k}, B\right)< \\
\alpha \max (f, X)+f_{k}\left(x_{0}\right)+1,
\end{gathered}
$$

since B is a boundary for H. On the other hand we have

$$
\begin{aligned}
\alpha f(y)+f_{k}(y) & =\alpha \max (f, X)+f_{k}(y) \\
& \geq \alpha \max (f, X)+f_{k}\left(x_{0}\right)+1
\end{aligned}
$$

Thus

$$
\max \left(\alpha f+f_{k}, X\right) \geq \alpha \max (f, X)+f_{k}\left(x_{0}\right)+1
$$

contradicting the above.
The unique minimal boundary of a subcone of $C(X)$, if it exists, is also called the Šilov boundary of this subcone.

Integral representations for linear functionals
A linear functional I on a subcone H of $C(X)$ is a mapping $I: H \rightarrow \mathbb{R}$ such that

$$
I(f+g)=I(f)+I(g) \quad \text { and } \quad I(\alpha f)=\alpha I(f)
$$

for all $f, g \in H$ and $\alpha \geq 0$. A linear functional I on H is called u-continuous if there is a constant $C \geq 0$ such that

$$
I(f) \leq I(g)+C \quad \text { whenever } \quad f \leq g+1
$$

for $f, g \in H$. This condition implies that I is monotone, that is

$$
I(f) \leq I(g) \quad \text { whenever } \quad f \leq g
$$

for $f, g \in H$. We observe the following:
Lemma. 3.1. If the subcone H of $C(X)$ contains a strictly positive function f_{0}, then every monotone linear functional on H is continuous.

Proof: Let I be a monotone linear functional on H and let $f_{0} \in H$ be strictly positive. Thus

$$
\alpha=\min \left\{f_{0}(x) \mid x \in X\right\}>0
$$

Let $f, g \in H$ such that $f \leq g+1$. Then

$$
f \leq g+1 \leq g+\frac{1}{\alpha} f_{0}
$$

and therefore

$$
I(f) \leq I(g)+\frac{1}{\alpha} I\left(f_{0}\right)
$$

using the monotonicity of I. \square
We shall use the classical Riesz-Markov representation theorem (see for example Theorem
II.1.2 in [3]) for linear functionals on $C(X)$ spaces in order to derive a more general result for linear functionals on a subcone H of $C(X)$. The resulting representation measures are supported by a boundary for H.

Theorem. 3.2. Let H be a subcone of $C(X)$ and let $B \subset X$ be a boundary for H. For every ucontinuous linear functional I on H there exists a positive regular Borel measure μ on X which is supported by B and such that

$$
I(f) \leq \int_{X} f d \mu \quad \text { for all } \quad f \in H
$$

Proof: Let I be a u-continuous linear functional on H and let $C \geq 0$ such that

$$
I(f) \leq I(g)+C \quad \text { whenever } \quad f \leq g+1
$$

for $f, g \in H$. For a function $f \in C(X)$ we denote by $\left.f\right|_{B}$ its restriction to the subset B of X. We have

$$
\max \left(\left.f\right|_{B}, B\right)=\max (f, X)
$$

for all $f \in H$, since B is a boundary for H. We define a \mathbb{R}-valued sublinear functional p on $C(B)$ by

$$
p(f)=C \max (f, B)
$$

for all $f \in C(B)$ and a $(\mathbb{R} \cup-\infty)$-valued superlinear functional q by

$$
q(f)=\sup \left\{I(h)|h \in H, h|_{B} \leq f\right\}
$$

for $f \in C(B)$. As usual, we set $\sup \emptyset=-\infty$. Moreover, q does not take the value $+\infty$, since $\left.h\right|_{B} \leq f$ for $f \in C(B)$ and $h \in H$ implies that $\left.h\right|_{B} \leq \max (f, B)$, hence $h \leq \max (f, B)$ and therefore

$$
I(h) \leq C \max (f, B)=p(f)
$$

using the u-continuity of I. This shows that

$$
q(f) \leq p(f) \quad \text { for all } f \in C(X)
$$

The sublinearity of p and the superlinearity of q are easily checked. Let us verify just one of the requirements for q : If

$$
\left.h_{1}\right|_{B} \leq f \quad \text { and }\left.\quad h_{2}\right|_{B} \leq g
$$

for $h_{1}, h_{2} \in H$ and $f, g \in C(B)$, then

$$
\left.h_{1}\right|_{B}+\left.h_{2}\right|_{B} \leq f+g,
$$

hence

$$
I\left(h_{1}\right)+I\left(h_{2}\right) \leq q(f+g)
$$

and therefore

$$
q(f)+q(g) \leq q(f+g)
$$

Now according to the sandwich version of the Hahn-Banach theorem (see for example Corollary I.3.26 in [3]) there exists a linear functional L on $C(B)$ such that

$$
q(f) \leq L(f) \leq p(f)
$$

for all $f \in C(X)$. We observe the following:
(i) L is bounded, that is continuous. Indeed, if $f \leq$ 1 for $f \in C(B)$, then $L(f) \leq p(f) \leq C$, hence if $\|f\| \leq 1$ then $|L(f)| \leq C$.
(ii) L is monotone. Indeed, if $f \leq 0$ for $f \in C(B)$ then $L(f) \leq p(f) \leq 0$, hence if $f \leq g$ for $f, g \in$ $C(B)$ then $f-g \leq 0$, and therefore

$$
L(f)-I(g)=L(f-g) \leq 0
$$

(iii) $L\left(\left.f\right|_{B}\right) \geq I(f)$ for all $f \in H$. Indeed, following the definition of the superlinear functional q we have

$$
L\left(\left.f\right|_{B}\right) \geq q\left(\left.f\right|_{B}\right) \geq I(f)
$$

Next we apply the Riesz-Markov representation theorem (see Theorem II.1.2 in [3]): there is a regular Borel measure $\tilde{\mu}$ on B such that

$$
L(f)=\int_{B} f d \tilde{\mu} \quad \text { for all } \quad f \in C(B)
$$

The measure $\tilde{\mu}$ on B corresponds to a regular Borel measure μ on X if we set

$$
\mu(A)=\tilde{\mu}(B \cap A)
$$

for every Borel subset A of X. This yields

$$
\int_{X} f d \mu=\int_{B} f d \mu=\left.\int_{B} f\right|_{B} d \tilde{\mu}
$$

for all $f \in C(X)$, and in particular

$$
\begin{gathered}
\int_{X} f d \mu=\int_{B} f d \mu=\left.\int_{B} f\right|_{B} d \tilde{\mu}=L\left(\left.f\right|_{B}\right) \\
\geq I(f)
\end{gathered}
$$

for all $f \in H$, our claim.
The statement of Theorem 3.2 can be further developed in the case that H is indeed a vector subspace of $C(X)$. It has been shown (see Theorem 3.3 and Corollary 4.4 in [5]) that in this case every continuous linear functional I on the subspace H of $C(X)$ can be expressed as a difference of two u-continuous ones, that is there are u-continuous linear functionals I_{1} and I_{2} on H such that

$$
I(f)=I_{1}(f)-I_{2}(f)
$$

for all $f \in H$. Using Theorem 3.2 the functionals I_{1} and I_{2} can be represented by positive regular Borel measures μ_{1} and μ_{2}, respectively. That is, we have

$$
I_{1}(f)=\int_{X} f d \mu_{1} \quad \text { and } \quad I_{2}(f)=\int_{X} f d \mu_{2}
$$

for all $f \in H$. Equality in these representations follows since $-f \in H$ whenever $f \in H$. Consequently, the signed measure $\mu=\mu_{1}-\mu_{2}$ is supported by B and represents the functional I on H, that is

$$
\begin{aligned}
I(f)=I_{1}(f) & -I_{2}(f)=\int_{X} f d \mu_{1}-\int_{X} f d \mu_{2} \\
& =\int_{X} f d \mu
\end{aligned}
$$

for all $f \in H$. We summarize:
Corollary. 3.3. Let H be a linear subspace of $C(X)$ and let $B \subset X$ be a boundary for H. For every bounded linear functional $I \in H^{*}$ there exists a regular Borel measure μ on X which is supported by B and such that

Examples 3.4. (a) Let X be the closed unit disc in \mathbb{R}^{2} and let H be the subcone of $C(X)$ consisting of those functions $f \in C(X)$ that are subharmonic in the interior of X, that is

$$
\frac{\partial^{2} f}{\partial x^{2}}(x, y)+\frac{\partial^{2} f}{\partial y^{2}}(x, y) \geq 0
$$

for all (x, y) in the interior of X. The subcone H symmetrically separates the points of X and contains the constants, and it is well known that its minimal boundary (Šilov boundary) consists of the circle line in this case, that is

$$
B=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}
$$

According to Theorem 3.2 every monotone (therefore u-continuous by Lemma 3.1) linear functional on H can be represented by a positive regular Borel measure on B. This is best dealt with in polar coordinates (r, ϕ), where the subharmonic inequality translates into

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \phi^{2}} \geq 0
$$

For a point evaluation at a point in the interior of X with the polar coordinates (r, θ), that is $r<1$, this representation is given by the Poisson Integral Formula

$$
\begin{aligned}
& f(r, \theta) \\
& \leq \frac{1-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{f(1, \phi)}{1-2 r \cos (\theta-\phi)+r^{2}} d \phi
\end{aligned}
$$

for every subharmonic function $f \in H$. The representation measure μ on B for this point evaluation is therefore the Lebesgue measure with the density function

$$
(1, \phi) \rightarrow \frac{1}{2 \pi} \frac{1-r^{2}}{1-2 r \cos (\theta-\phi)+r^{2}}
$$

For the subspace L of all harmonic functions, that is $L=H \cap(-H)$, the above inequality turns into an equality, that is we have

$$
I(f)=\int_{X} f d \mu \quad \text { for all } \quad f \in H
$$

$$
\begin{aligned}
& f(r, \theta) \\
& =\frac{1-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{f(1, \phi)}{1-2 r \cos (\theta-\phi)+r^{2}} d \phi
\end{aligned}
$$

for every harmonic function $f \in L$.
(b) Let X be a compact convex subset of a normed space (or a Hausdorff locally convex topological vector space). Recall that convexity means that $\lambda x+(1-\lambda) y \in X$ whenever $x, y \in X$ and $0 \leq$ $\lambda \leq 1$. An extreme point of X is a point $x \in X$ such that

$$
x=\lambda y+(1-\lambda) z
$$

for $y, z \in X$ and $0<\lambda<1$ implies that $x=y=$ z, that is x is not an interior point of a line segment in X. A function $f: X \rightarrow \mathbb{R}$ is said to be convex if

$$
f(x) \leq \lambda f(y)+(1-\lambda) f(z)
$$

whenever $x=\lambda y+(1-\lambda) z$ for $y, z \in X$ and $0 \leq \lambda \leq 1$. The subcone H of all convex functions in $C(X)$ symmetrically separates the points of X (this follows from the Hahn-Banach theorem) and contains the constants. According to the KreinMilman theorem its minimal boundary B is the closure of the set of all extreme points of X.

For a concrete example let X be a closed convex polygon in \mathbb{R}^{2} with the vertices P_{1}, \ldots, P_{n}. Then $B=\left\{P_{1}, \ldots, P_{n}\right\}$ is the Silov boundary for H and according to Theorem 3.2 every monotone linear functional I on H can be represented by a regular Borel measure μ on B. But the measures on the finite set B are just linear combinations of point evaluations $\delta_{P_{i}}$. If in particular the functional I is monotone, and therefore u-continuous, then μ is a convex combination of these point evaluations, that is

$$
\mu=\lambda_{1} \delta_{P_{1}}+\cdots+\lambda_{n} \delta_{P_{n}}
$$

where $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ and $\lambda_{1}+\cdots+\lambda_{n}=I(1)$. Thus

$$
I(f) \leq \int_{X} f d \mu=\lambda_{1} f\left(P_{1}\right)+\cdots+\lambda_{n} f\left(P_{n}\right)
$$

for all $f \in H$. For affine functions, that is functions in $L=H \cap(-H)$, and a continuous (not necessarily monotone) linear functional I on L we obtain according to Corollary 3.3 a similar representation, that is

$$
I(f)=\int_{X} f d \mu=\lambda_{1} f\left(P_{1}\right)+\cdots+\lambda_{n} f\left(P_{n}\right)
$$

where $P_{i} \in B$ and $\lambda_{i} \in \mathbb{R}$ for $i=1, \ldots, n$.

References

[1] E.M. Alfsen, Compact convex sets and boundary integrals Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 57, 1971, Springer Verlag, Heidelberg-BerlinNew York.
[2] H. Bauer, Silovscher Rand und Dirichletsches Problem Ann. Inst. Fourier (Grenoble) 11, 1961, 89-136.
[3] Foo Chui Chen, Integral representations for continuous linear functionals, MSc Thesis, 2016, Universiti Brunei Darussalam.
[4] R.R. Phelps, Lectures on Choquet's theorem, Lecture Notes in Mathematics, 1757 Springer Verlag, 1966, Heidelberg-Berlin-New York.
[5] W. Roth, Real and complex linear extensions for locally convex cones, Journal of Functional Analysis, vol. 151, no. 2, 1997, 437-454.
[6] I. Gelfand, D. Raikov and G. Šilov, Commutative normed rings, 1964, Chelsea (translated from Russian).

