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Abstract 

In this era of globalization, the demand for energy is rising in tandem with social and economic 

development throughout the world. Current hydrocarbon demand is much greater than domestic 

crude oil and natural gas production. In order to bridge the gap between energy supply and 

demand, it is imperative to accelerate exploration activities and develop new effective and 

efficient techniques for discovering hydrocarbons. Therefore, this study presents a new method 

for integrating seismic inversion data and well data using geostatistical principles that allow for 

the high level of processing and interpretation expected nowadays. The main part of this paper 

will concern the preparation and processing of the input data, with the aim of constructing a map 

of hydrocarbon-potency distribution in a certain horizon. It will make use of principal component 

analysis (PCA) and the co-kriging method. In the case study of Field X, we analyze a single new 

dataset by applying PCA to every existing well that contains multivariate rock-physics data. The 

interpretation that can be extracted from the output gives us information about the hydrocarbon 

presence in a particular depth range. We use that output as our primary dataset from which our 

research map is constructed by applying the co-kriging method. We also rely on an acoustic 

impedance dataset that is available for a certain horizon to fulfill the co-kriging interpolation 

requirement. All of the acoustic impedance data and output data that result from the application 

of PCA in a particular horizon give strong correlation factors. Our resulting final map is also 

validated with information from proven hydrocarbon discoveries. It is demonstrated that the map 

gives accurate information suggesting the location of hydrocarbon potency, which will need some 

detailed follow-up work to enhance the distribution probabilities. This method can be considered 

for hydrocarbon prediction in any area of sparse well control. 

 

Index Terms: co-kriging, PCA, spatial relations, well data, AI seismic inversion 

 

1. Introduction  
In earth sciences, we seldom have sufficient data 

to accurately reveal the entire underlying 

subsurface conditions. Typically, in prospecting 

hydrocarbon zonation, we have to estimate the 

input parameters for the entire area from only a 

few data points. The existence of log data from 

the wells facilitates the descriptions of the 

petrophysical rock parameters. The more well 

data, the more accurate the geological modelling 

will be, and the easier the lateral seismic 

interpretation will become. It is hoped that the 

distribution of petrophysical rock parameters can 

be estimated in any area of sparse well control, 

with seismic data as a guide. Therefore, spatial 

modelling techniques should be used to generate 

the best geological interpretation and understand 

the associated uncertainties. 

 

Seismic inversion aims to reconstruct a 

quantitative model of the Earth’s subsurface, by 

solving an inverse problem based on seismic 

measurements.
6
 Seismic inversion can provide 

information about the physical properties of the 
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reservoir rocks and identify the layers of 

subsurface rocks through the acoustic impedance 

profile (AI). The value of the acoustic impedance 

obtained in the inversion process is its value at 

certain points, whereas what is required is the 

overall value in the area of interest. We must 

therefore use a technique to estimate the values in 

the vertical and lateral directions, and the 

methods used for this will be geostatistical. 

 

Geostatistical methods are easily useable at low 

cost, and provide an adequate framework for 

incorporating exhaustive secondary information 

(AI seismic inversion data) to improve the 

estimates of the primary variables (generated 

from PCA). The present paper makes use of 

collocated co-kriging to incorporate AI seismic 

inversion data as secondary information for 

mapping the values of the petrophysical rock 

parameters obtained from the application of PCA 

to well data. 

 

2. Materials and Methods 
In this study, we split the data processing into 

two main steps: (i) preparation of the primary 

data by applying principal component analysis 

(PCA) to our well data set (log), and (ii) using 

collocated co-kriging to interpolate that primary 

data. The aim of the study is to create a 

distribution map of the hydrocarbon potency by 

making use of principal component score data, 

and a seismic inversion “acoustic impedance” 

horizon map as a secondary data set to apply 

collocated co-kriging. We use the programs 

Paradigm 14.0 and Xlstat to help in this research, 

especially for constructing the map and 

performing the PCA. A flowchart of the process 

is shown in Figure 1. 
 

 
 

Figure 1. Flow diagram of the process. 

 

2.1 Well data and principal component analysis 

The physical data that has been compiled from 

each well is the main source of input data for the 

principal component analysis (PCA). Principal 

component analysis (PCA) is a multivariate data 

dimensionality reduction technique, used to 

simplify a data set to a smaller number of factors 

which explain most of the variability (variance).
1
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In this study, there are data from 5 well sites that 

have deviated mechanisms (i.e., the well is not 

drilled straight down) with different orientations. 

The physical characteristics that are used as input 

values for the PCA are ; GR (Iγ) – total gamma 

ray intensity [API], RLLD (ρLLD) – dual 

laterolog deep resistivity [Ω∙m], NPHI (ΦN) – 

compensated neutron porosity [V/V], DEN (δ) – 

compensated bulk density [g/cm
3
], and DT (Δt) – 

compensated sonic transit time [μs/ft]. 

 

The depth of the wells is about 1600 meters 

down from the subsurface. In actual fact, the 

distribution of well sites in the data acquired by 

PT Pertamina EP Asset 3 is clustered around the 

center of the low Acoustic Impedance (AI)-value 

map. There are four well sites that have been 

drilled in a specific alignment or orientation with 

5-10 meter of spacing between each of them in 

the center of the AI Map, and one well site on the 

upper right side (outside the center of the AI 

map). 

 

The first step toward generating the primary data 

from the principal component analysis is to 

produce a correlation matrix between each pair of 

variables using all the data from the wells in 

Field X, which we will label X-1, X-2, X-3, X-4, 

and X-5. Each well that we are using for 

prospecting has available data logs for five 

variables (NPHI, DT, RHOB, GR, and ILD). The 

matrix of correlations for the data from all the 

wells in Field X is shown in Tables 1 - 5. 

 
Table 1. Correlation matrix for well X-1 

 
Variables DT GR ILD NPHI RHOB 

DT 1 0.338 -0.076 0.853 -0.653 

GR 0.338 1 -0.063 0.291 0.024 

ILD -0.076 -0.063 1 -0.110 0.026 

NPHI 0.853 0.291 -0.110 1 -0.785 

RHOB -0.653 0.024 0.026 -0.785 1 

 
Table 2. Correlation matrix for well X-2 

 
Variables DT GR ILD NPHI RHOB 

DT 1 0.251 -0.064 0.016 -0.196 

GR 0.251 1 -0.106 0.013 0.466 

ILD -0.064 -0.106 1 -0.001 0.035 

NPHI 0.016 0.13 -0.001 1 -0.004 

RHOB -0/196 0.466 0.035 -0.004 1 

 

 

 

Table 3. Correlation matrix for well X-3 

 
Variables DT GR ILD NPHI RHOB 

DT 1 0.288 -0.040 0.586 -0.250 

GR 0.288 1 -0.065 0.601 0.509 

ILD -0.040 -0.065 1 -0.098 -0.041 

NPHI 0.586 0.601 -0.098 1 -0.183 

RHOB -0.250 0.509 -0.041 -0.183 1 

 
Table 4. Correlation matrix for well X-4 

 
Variables DT GR ILD NPHI RHOB 

DT 1 0.635 -0.040 0.416 -0.250 

GR 0.635 1 -0.065 0.646 0.509 

ILD 0.416 0.646 1 -0.098 -0.041 

NPHI -0.198 -0.133 -0.098 1 -0.183 

RHOB 0.142 0137 -0.041 -0.558 1 

 
Table 5. Correlation matrix for well X-5 

 
Variables DT GR ILD NPHI RHOB 

DT 1 0.739 -0.138 0.776 -0.366 

GR 0.739 1 -0.195 0.773 -0.016 

ILD -0.138 -0.195 1 -0.145 -0.155 

NPHI 0.776 0.773 -0.145 1 -0.535 

RHOB -0.366 -0.016 -0.155 -0.535 1 

 

From the correlation matrices, we have extracted 

the eigenvalues for each of the wells as a second 

step in performing the PCA. These eigenvalues 

determine the principal components for each 

dataset, and more importantly the share of the 

variance due to each component. In this study, 

the PCA of the well data for Field X produces 5 

separate principal components. The eigenvalues 

for each of the observed fields are shown in 

Tables 6 - 10. 

 
Table 6. Eigenvalues for well X-1 

 
 F1 F2 F3 F4 F5 

Eigenvalue 2.623 1.057 0.957 0.255 0.109 

Variability  52.450  21.134 19.144 5.096 2.176 

Cumulative 52.450  73.584 92.728 97.824 100.000 

 
Table 7. Eigenvalues for well X-2 

 
 F1 F2 F3 F4 F5 

Eigenvalue 1.478  1.202 1.000 0.952 0.368 

Variability  29.569 24.036 19.997 19.043 7.354 

Cumulative  29.569 53.605 73.603 92.646 100.000 

 
Table 8. Eigenvalues for well X-3 

 
 F1 F2 F3 F4 F5 

Eigenvalue 2.011 1.448 0.985 0.441 0.116 

Variability  40.220 28.957 19.693 8.816 2.313 

Cumulative  40.220 69.177 88.870 97.687 100.000 
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Table 9. Eigenvalues for well X-4 

 
 F1 F2 F3 F4 F5 

Eigenvalue 2.238 1.366 0.926 0.395 0.076 

Variability  44.757 27.319 18.514 7.896 1.514 

Cumulative  44.757 72.077 90.590 98.486 100.000 

 
Table 10. Eigenvalues for well X-5 

 
 F1 F2 F3 F4 F5 

Eigenvalue 2.725 1.217 0.756 0.241 0.062 

Variability  54.497 24.344 15.115 4.812 1.232 

Cumulative 54.497 78.841 93.956 98.768 100.000 

 

The eigenvalues for each set of well data yield 

the corresponding eigenvectors and factor 

loadings, which will shortly be used to construct 

the new projected data set. The eigenvalues are 

determined by Equation 1. 

 

   𝐴𝑉1 = 𝜆𝑉1       (1) 

 

Here, A is any of the correlation matrices, λ is an 

eigenvalue, and V1 is the corresponding 

eigenvector. The eigenvalues and loading factors 

for each well are shown in Tables 11 - 15. 

 
Table 11. Eigenvectors for well X-1 

 
 F1 F2 F3 F4 F5 

DT 0.570 0.026 0.081 0.683 -0.449 

GR 0.221 0.722 0.550 -0.342 -0.099 

ILD -0.084 -0.575 0.812 0.024 0.043 

NPHI 0.595 -0.046 -0.014 0.034 0.802 

RHOB -0.515 0.380 0.177 0.644 0.380 

 
Table 12. Eigenvectors for well X-2 

 
 F1 F2 F3 F4 F5 

DT 0.138 0.775 0.004 0.433 -0.438 

GR 0.735 -0.167 -0.003 0.119 0.646 

ILD -0.133 -0.412 0.187 0.876 0.098 

NPHI 0.018 0.082 0.982 -0.168 -0.006 

RHOB 0.650 -0.441 0.013 -0.043 -0.617 

 
Table 13. Eigenvectors for well X-3 

 
 F1 F2 F3 F4 F5 

DT 0.521 -0.360 0.060 -0.771 0.020 

GR 0.555 0.456 0.119 0.188 0.659 

ILD -0.119 -0.071 0.989 0.028 -0.037 

NPHI 0.636 -0.166 0.030 0.495 -0.567 

RHOB 0.040 0.793 0.053 -0.352 -0.492 

 

 

 

 

 

 

Table 14. Eigenvectors for well X-4 

 
 F1 F2 F3 F4 F5 

DT 0.507 0.367 -0.001 0.780 -0.006 

GR 0.570 0.289 0.191 -0.511 -0.542 

ILD 0.577 -0.351 0.195 -0.205 0.68 

NPHI -0.245 0.088 0.958 0.119 0.015 

RHOB -0.157 0.807 -0.088 -0.274 0.491 

 
Table 15. Eigenvectors for well X-5 

 
 F1 F2 F3 F4 F5 

DT 0.551 -0.011 0.112 0.821 0.097 

GR 0.512 -0.294 0.416 -0.332 -0.606 

ILD -0.125 0.685 0.715 -0.012 0.061 

NPHI 0.578 0.086 -0.046 -0.460 0.667 

RHOB -0.290 -0.661 0.548 0.062 0.418 

 
Table 16. Factor loadings for well X-1 

 
 F1 F2 F3 F4 F5 

DT 0.923 0.027 0.080 0.345 -0.148 

GR 0.358 0.743 0.538 -0.173 -0.033 

ILD -0.084 -0.575 0.812 0.024 0.014 

NPHI 0.595 -0.046 -0.014 0.034 0.264 

RHOB -0.515 0.380 0.177 0.644 0.125 

 
Table 17. Factor loadings for well X-2 

 
 F1 F2 F3 F4 F5 

DT 0.168 0.850 0.004 0.423 -0.266 

GR 0.894 0.183 -0.003 0.116 0.392 

ILD -0.162 -0.452 0.187 0.855 0.059 

NPHI 0.022 0.089 0.982 -0.164 -0.004 

RHOB 0.790 -0.484 0.013 -0.042 -0.374 

 
Table 18. Factor loadings for well X-3 

 
 F1 F2 F3 F4 F5 

DT 0.739 -0.433 0.059 -0.529 0.007 

GR 0.787 0.549 0.118 0.125 0.224 

ILD -0.169 -0.085 0.982 0.018 -0.013 

NPHI 0.902 -0.200 0.030 0.329 -0.193 

RHOB 0.057 0.955 0.053 -0.234 -0.167 

 
Table 19. Factor loadings for well X-4 

 
 F1 F2 F3 F4 F5 

DT 0.759 0.429 -0.001 0.490 -0.002 

GR 0.853 0.337 0.184 -0.321 -0.149 

ILD -0.366 0.103 0.922 0.075 0.004 

NPHI 0.863 -0.410 0.187 -0.129 0.187 

RHOB -0.235 0.943 -0.084 -0.172 0.135 

 
Table 20. Factor loadings for well X-5 

 
 F1 F2 F3 F4 F5 

DT 0.910 -0.012 0.097 0.403 0.024 

GR 0.845 -0.324 0.362 -0.163 -0.150 

ILD -0.206 0.755 0.622 -0.006 0.015 

NPHI 0.954 0.095 -0.040 -0.226 0.165 

RHOB -0.479 -0.730 0.476 0.030 0.104 
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The transformation of the primary data into a 

projected data set by making use of the 

information about the components is a critical 

step in PCA. The multivariate information 

carried by the primary data acts as input data for 

the next step in the process. This multivariate 

information will provide fundamental guidance 

for the interpretation of the interpolated data map 

that will result from the collocated co-kriging.  

 

In this study, we will choose a principal 

component that has a high loading factor for the 

variables GR, NPHI, and DT. For this reason, we 

stipulate that for wells X-1, X-3, X-4, and X-5 

we will be using Component 1 (F1) and for well 

X-2 Component 2 (F2). The purpose of this 

selection is to allow us to interpolate the primary 

data while retaining information about the porous 

rock stratum and the hydrocarbon (gas or oil) 

potency. 

 

After calculating the eigenvectors for each set of 

well data and selecting single components, the 

next step is to construct a new data set called the 

principal component scores (PCS). It should be 

noted that the PCS is a projected data set that 

carries information about the primary data and is 

built from the factor loadings. The values of the 

PCS for each well are shown in Tables 21 – 25. 

 
Table 21. Principal component scores for well X-1 

 
Observation F1 F2 F3 F4 F5 DEPTH 

Obs1 2.54 -0.269 -0.103 0.339 1.302 974.286 

Obs2 2.38 -0.27 -0.123 0.135 1.532 974.438 

Obs3 2.24 -0.30 -0.156 -0.048 1.586 974.59 

Obs4 

… 

2.26 

… 

-0.46 

… 

-0.467 

… 

-0.244 

… 

-0.356 

… 

974.743 

… 

 
Table 22. Principal component scores for well X-2 

 
Observation F1 F2 F3 F4 F5 DEPTH 

Obs1 1.871 0.138 0.046 0.445 -2.379 1122.115 

Obs2 0.467 1.669 0.018 0.789 -0.960 1122.267 

Obs3 0.390 1.921 0.018 0.874 -0.785 1122.42 

Obs4 

… 

0.285 

… 

2.399 

… 

0.013 

… 

1.085 

… 

-0.722 

… 

1122.572 

… 

 
Table 23. Principal component scores for well X-3 

 
Observation F1 F2 F3 F4 F5 DEPTH 

Obs1 

Obs2 

Obs3 

Obs4 

… 

3.659 

3.456 

3.574 

3.575 

… 

-3.914 

-4.394 

-2.751 

-2.437 

… 

0.246 

0.236 

0.412 

0.523 

… 

-5.055 

-5.695 

-6.916 

-7.292 

… 

-0.065 

0.344 

-0.605 

-0.678 

… 

1148.012 

1148.165 

1148.317 

1148.47 

… 

 
Table 24. Principal component scores for well X-4 

 
Observation F1 F2 F3 F4 F5 DEPTH 

Obs1 -2.069 -1.728 -0.748 0.325 -0.439 1533.144 

Obs2 -2.065 -1.833 -0.732 0.281 -0.443 1533.296 

Obs3 -2.241 -2.114 -0.706 -0.092 -0.326 1533.449 

Obs4 

… 

-2.139 

… 

-2.232 

… 

-0.670 

… 

-0.094 

… 

-0.298 

… 

1533.601 

… 

 
Table 25. Principal component scores for well X-5 

 
Observation F1 F2 F3 F4 F5 DEPTH 

Obs1 1.425 3.082 -3.025 -2.855 -0.427 1593.189 

Obs2 1.589 2.989 -2.884 -2.428 0.146 1593.342 

Obs3 1.331 2.847 -2.718 -2.291 0.331 1593.494 

Obs4 

… 

0.948 

… 

2.889 

… 

-2.775 

… 

-2.524 

… 

-0.480 

… 

1593.647 

… 
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The conditioning step for the primary data is now 

complete.  

 

2.2 Acoustic impedance map and collocated co-

kriging 

In this study, we use the map of the acoustic 

impedances of the Z-14 horizons in Field X, 

which provides an indication of the potential 

presence of hydrocarbon fluids. This field is 

located in the West Java Basin, in the Cibulakan 

Atas formation, which consists of a combination 

of shale, sandstone, and limestone (see Figure 2). 

 

The AI map that we make use of, as a secondary 

data set when applying the process of collocated 

co-kriging, has a spatial extent of 1440 x 2750 

m
2
. Collocated co-kriging is a variant of full co-

kriging, where secondary data used for 

estimation are reduced so as to retain only the 

secondary datum in the location where the 

primary variable is being estimated.
4,7

 The Z-14 

horizon is located at around 1600 m depth, with a 

variable AI score ranging from 7000 rayl to 

10.,000 rayl in each sector of the map (as can be 

seen in the color bar of the AI map in Figure 4). 

The inversion AI data for the Z-14 horizon of 

Field X that we use to perform the collocated co-

kriging is the property of PT Pertamina EP Asset 

3. It was produced by model-based inversion 

theory (see Figure 3). 
 

 
 

Figure 2. Stratigraphy of West Java Basin
2 
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Figure 3. Flow diagram of model-based inversion method 

 

 

Figure 4. Map of the acoustic impedance with the distribution of PCS for the primary data (black dots) 

 

Based on the given information about the 

acoustic impedance of the Z-14 horizon, it is 

clear that there is a low value of the acoustic 

impedance in the center and upper right of the 

map. The variable scores can be interpreted as 

being due to the presence of a porous (not 

compacted) rock stratum in Field X that contains 

fluids. This particular data set is one of the 

considerations that led PT Pertamina EP Asset 3 

to decide to make some delineations and collect 

well log data at several locations, as there was a 

high probability of a hydrocarbon prospect there.  

 

As mentioned above, the intention is to 

apply collocated co-kriging to interpolate 

the values of the PCS extracted from the 

well log data. Remembering that the well 

sites deviate from the vertical with different 

orientations, the intersections of the wells 

and the Z-14 horizon have different depths 

on the AI map. So in this case, the PCS at 

the intersections between the wells and the 

Z-14 Horizon (at the depth of the horizon) 

are taken as input data (see Figure 5 and 

Table 26). 
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Figure 5. The horizon map of Field X 

 
Table 26. The Primary Data Input from the PCS 

 
No Well Depth PC Score 

X-1 

X-2 

X-3 

X-4 

X-5 

1669.31 

1665.66 

1687.51 

1696.2 

1657.64 

3.921 

-0.22 

1.345 

1.301 

1.631 

 

The data from the available results of the PCS are 

used as primary input, and the AI seismic 

inversion map as densely sampled secondary 

input data. In addition, to improve the 

interpolation accuracy, the correlation between 

the primary and secondary variables should be as 

high as possible. Therefore we must construct a 

cross plot between both sets of data. 

 

The red dots in Figure 6 correspond to data 

sampled from the primary and secondary 

variables, which have a correlation factor of 

about -0.765. The cross plot is used to measure 

the strength of the relationship between the two 

variables. A negative correlation means that as 

the value of one variable increases, the other 

decreases. 

 

 
 

Figure 6. Correlation factor  

 

Collocated co-kriging represents the spatial 

relationship of the control data in the form of a 

variogram such as Figure 7. Two important 

criteria that show the consistency of the spatial 

structure are the range and the relative nugget 

effect (nugget effect/sill: C0/C). The variogram 

that is more appropriate has a greater range and 

smaller nugget effect. The variogram below has 

no nugget effect, with a range of 1218.28 and a 

sill of 2.53. 

 

Correlation 
factor: -0.765 



Geology Scientia Bruneiana, Vol. 17, No. 1 2018 

43 
 

 
 
Figure 7. Collocated co-kriging variogram 

 

3. Results 

Based on the processed output data from Field X, 

there is a significant hydrocarbon potency in the 

field, but not at every spot that wasn’t sampled. 

The magnitude of the hydrocarbon potency at 

each interpolated spot can be examined 

quantitatively using the color-bar of the map in 

Figure 8.  

 

The red color intervals are in the range 2.8-3.5 

(dimensionless), which can be considered as 

areas of potential hydrocarbon content having 

high PCS values. All of the interpolated data, as 

stated before, refers to the primary data, reduced 

to principal component Scores (PCS) which 

contain “multivariate (many variables) 

information”. The variables that contribute to this 

particular PCS, in this study, are NPHI, GR, and 

DT. These three variables coherently give 

information about the presence, or not, of 

hydrocarbon fluid content and tend to indicate 

porosity.
3
  

 

The Wyllie formula for calculating sonic porosity 

can be used to determine porosity in consolidated 

sandstones and carbonates with intergranular 

porosity (grainstone) or intercrystalline porosity 

(sucroise dolomites).
2
 Meanwhile, NPHI can be 

used to calculate vuggy or fracture secondary 

porosity in carbonates by comparing it to the total 

porosity. The fracture secondary porosity is 

found by subtracting the sonic porosity from the 

total porosity. The Wyllie equation reads: 

 

       ∅𝑠𝑜𝑛𝑖𝑐 = (
∆𝑡𝑙𝑜𝑔−∆𝑡𝑚𝑎

∆𝑡𝑓−∆𝑡𝑚𝑎
) × 1/𝐶𝑝     (2) 

where 

 

∅𝑠𝑜𝑛𝑖𝑐  = sonic derived porosity 

∆𝑡𝑚𝑎 = interval transit time of the matrix 

∆𝑡𝑙𝑜𝑔 = interval transit time of formation 

∆𝑡𝑓 = interval transit time of the fluid in 

the well bore 

(fresh mud = 189; salt mud = 185) 

Cp = compaction factor 

 

The compaction factor can be calculated from the 

formula: 

𝐶𝑝 =
∆𝑡𝑠ℎ×𝐶

100
         (3) 

where  

 

∆𝑡𝑠ℎ = interval transit time for adjacent 

shale 

𝐶 = a constant which is normally
5
 1.0  

 

It can clearly be seen that the high PCS are in 

general located in the center, left, and lower right 

corner of the map in Figure 8. These results are 

completely different from the hydrocarbon 

potency for Field X predicted from the 

quantitative values of the acoustic impedance. 
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Figure 8. A distribution map of the hydrocarbon potency generated by collocated co-kriging 

 

4. Discussion and Conclusion 

Here we identify six different zones in the 

potency map generated by our analysis, which 

would need some detailed exploration to 

reveal the accuracy of our hydrocarbon 

prospecting. It can be positively stated that 

low values of the AI (red color) for the Z-14 

horizon of Field X, should not be regarded as 

an infallible indicator of hydrocarbon potency 

in all cases. Our study is based on the 

application of collocated co-kriging to 

interpolate the PCS data from all the wells in 

Field X. Our study simply adds extra 

information to what is already known about 

the potency of hydrocarbon discovery at the 

site, building the AI score, and the 

interpolated PCS map can be worthwhile as a 

controlling or enhancing factor if and when it 

is decided to drill further prospect delineation 

wells. 

 

In this study, we have performed a 

quantitative and qualitative test to determine 

whether the PCS interpolated map is 

scientifically and intuitively adequate for 

hydrocarbon prospecting. The quantitative 

test that we came up was to construct a 

“cross-plot” section between the primary and 

secondary data, as shown in Figure 6. The 

cross-plot in this case has a correlation factor 

about -0.765 which is close to -1. This 

indicates a strong relationship between the 

two data sets. Moreover, the fact that the 

correlation factor is negative, in this case, 

signals a reverse relationship between the 

PCS and the AI seismic inversion data. 

 

Now that the PCS have been interpolated by 

collocated co-kriging, we continue our 

interpretation by examining well X-1, which 

is located at the center of our output map in 

Figure 9. This well intersects the Z-14 

horizon in the red colored zone on the output 

map. We also have data from Pertamina EP 

Asset 3 that gives us information about the 

gas production from this well (see Figure 10). 

This information allows us to extend our 

predictions to gas potency in the area, which 

is highest in the red colored zones in an 

output map very similar to Figure 9. Even 

though we are predicting that most of the red-

colored zones have high gas potency, we are 

not recommending HD3 because that zone is 

located relatively far from all the sampled 

wells. 

 

What about the blue colored zones in Figure 

9? We can also make some predictions for 

those zones. As a starting point for these 

predictions, we use the production 

performance data we have for well X-2. In 

this well, the production is dominated by oil 
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(see Figure 11). In view of this, we have 

identified 5 blue zones in Figure 12 that we 

expect to have high oil potency, although 

more detailed exploration would be needed to 

test the accuracy of this hydrocarbon 

prospecting. 

 

We can also perform a qualitative validation 

of the accuracy of the combined PCA and 

collocated co-kriging results by estimating the 

hydrocarbon potency in an un-sampled area. 

As we stated before, all the well data and the 

acoustic impedance map used in this study are 

the property of PT Pertamina EP Asset 3. The 

total data set from Field X includes data from 

a sixth well. We can therefore perform a 

validation of the PCS map generated in this 

study by using all the well data for Field X. 

We have used the data from the first five well 

(X-1, X-2, X-3, X-4, and X-5) to predict the 

hydrocarbon potency in Field X, and the 

validation data comes from the sixth well (X-

6). The validation data from X-6 is shown in 

the production performance graph for the Z-

14 horizon in Figure 13. 

 

Based on the wells location data we have for 

the Z-14 Horizon, well X-6 is located in zone 

HD1 (see Figure 9). In any case, a 

comprehensive further geological and 

geophysics analysis is needed for zones HD2, 

HD3, HD4, and RBA1-RBA5 to check the 

potential presence of hydrocarbons.  

 

Moreover, it can be concluded that the PCS 

distribution map generated from the combined 

PCA-collocated co-kriging method has 

successfully mapped the hydrocarbon potency 

as a guide for more detailed exploration in 

Field X. 

 

 
 

Figure 9. Six different zones in the distribution map with high hydrocarbon potency generated by the 

collocated co-kriging and the acoustic impedance map 

 

 
 
Figure 10. Production performance for Well X-1 
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HD5 Well X-6 
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Figure 11. Production performance for Well X-2 

 

 
 

Figure 12. Blue colored zones predicted to have high oil potency 

 

 
 
Figure 13. Production performance of well X-6 (upper) for the Z-14 horizon. 
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