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Greetings from the Dean of UBD's Faculty of Science. 
 

I am pleased to introduce our first issue for 2017 which again highlight some important and significant 

findings made by our own researchers in field of natural and applied sciences. This journal is unique as 

it does not focus solely on fundamental sciences but also applied sciences thus promoting inter- and 

multi-disciplinarity.  

 

The Faculty has a strong record of ground-breaking research in the biological, physical and mathematical 

sciences. The papers appearing in this issue demonstrate the ongoing commitment of our research staff 

to innovative science that contributes to the national interest as well as broadening the knowledge base 

of the global scientific community. The many outstanding examples of collaborative research showcased 

here highlight the recognition that quality Bruneian research is now receiving across the world. 

 

I am also pleased to note contribution from leading scientists in this issue. In our pursuit of international 

excellence and global recognition, we are certain this trend will continue. 

 

I would like to thank my colleagues at Faculty of Science particularly authors, associate and subject 

editors for their continuous support. 

  

  

Yours Sincerely 

Abby Tan Chee Hong 

Chief Editor 

Scientia Bruneiana
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Presently, over 85% of world energy requirements 

are satisfied by finite fossil fuels, which are 

inexpensive but with the concealed cost of 

detrimental consequences on health and 

environment1. On the other hand, solar power is 

infinite. Therefore, photovoltaic technologies are 

ideal to supply green and grid-free energy. The 

first generation silicon solar cells yield 25.6% 

laboratory efficiency, and 15 to 20% module 

efficiency depending on the manufacturer2. The 

second generation of thin-film technologies based 

on microcrystalline silicon, CdTe, and CIGS 

(copper indium gallium selenide) yields power 

conversion efficiency over 12 to 15%2. The third 

generation, based on dye-sensitized solar cells 

(DSC) and organic solar cells, has an efficiency in 

the range of 10 to 12%3. In the DSC, the 

functionalized sensitizers, shown in Figure 1a, 

anchors onto TiO2 nanoparticles, and absorbs 

visible light to form excitons. At the interface 

between the sensitizer and the TiO2 nanoparticles, 

excitons split into charges that are then collected 

at the electrodes. Modification of the light-

absorbing sensitizer from a trinuclear4 to a 

mononuclear ruthenium dye increased power 

conversion efficiency from 7% to 11%5. A 

molecularly engineered donor–chromophore–

acceptor porphyrin-based sensitizer produced 

power conversion efficiency over 13%6. The three 

landmark sensitizers and the operating mechanism 

of the DSC are shown in Figures 1a and 1b, 

respectively. The DSC reported is based on a 

liquid electrolyte with iodine/iodide and cobalt 

redox mediators. The liquid electrolyte may be 

replaced by an organic or inorganic hole 

transporting material to form solid-state DSCs. 

The power conversion efficiency of the solid-state 

DSC is half of the liquid DSC due to issues with 

the infiltration of the hole transporting material 

caused by the pore size of the TiO2. 

 

Perovskite solar cells are considered to be the 

most promising photovoltaic technology because 

of their favorable power conversion efficiency of 

22%, addressing the increasing energy demand, 

greenhouse gasses, and depleting fossil fuels7. The 

Perovskite solar cell (PSC) configuration is 

similar to the solid-state DSC where the sensitizer 

is replaced by the perovskite pigment7. The 

Perovskite, named after the Russian mineralogist 

L.A. Perovski, has a specific crystal structure with 

the ABX3 formula. Where A is the organic cation 

situated at the eight corners of the unit cell, B is 

the metal cation located at the body center, and X 

represents the halide anion in the six face centers 

(see Figure 1)8. The perovskite ABX3 materials 

have significant advantages compared to other 

photovoltaic materials such as inexpensive 

precursors, high absorption coefficient, ambipolar 

charge transport properties, long carrier diffusion 

lengths, extremely low exciton binding energy. 

The band gap tunability by substituting "A" 

cations and "X" halides from I- to Cl-, and simple 

fabrication methods such as one step, sequential 

deposition and dual source sublimation as shown 

in Figure 2.
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Figure 1. a) Chemical structures of landmark sensitizers and cubic perovskite of general formula, ABX3; b) working 

principle of dye-sensitized solar cells (DSC); c) Now and then, showing an evolution of Perovskite solar cell (PSC) 

from DSC. 

 

Figure 2. Three general methods for deposition of active perovskite layer. (a) one step, (b) sequential and (c) dual 

source sublimation. 

Typical PSC configurations are n-i-p mesoscopic 

or planar and inverted p-i-n architecture. The 

configuration n-i-p devices composed of an 

electron transporting material TiO2 (ETM), 

infiltrated with the perovskite absorbing material 

and coated with a hole transporting material 

(HTM), which plays an important role to facilitate 

the holes from perovskite to the gold as a back 

contact. The highest reported efficiency over 22% 

is based on n-i-p structure, where the perovskite is 

an intrinsic semiconductor, TiO2 acts as an 

electron acceptor material (n-type layer), and poly 

tertiary aryl amine polymer (PTAA) as the hole 

transporter (p-type layer)9-10. Such a high PCE is 

achieved due to the relatively large open-circuit 

voltage (VOC) of PSC, generally over 1.0 V, which 

is outstanding compared to other photovoltaic 

technologies such as organic- or silicon-based 
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Figure 3. (a) Current–voltage scans for the best performing Cs5M device showing PCEs exceeding 21% with little 

hysteresis. (b) Aging for 250 h of a high performance Cs5M and Cs0M devices in a nitrogen atmosphere held at room 

temperature under constant illumination and maximum power point tracking. 

 

 

Figure 4. Solaronix large-area photovoltaic module characterization: IV characteristics of perovskite photovoltaic 

panel 0.85 m2 measured under 1000 W/m2 Sunlight. The stability data obtained at Solaronix over 8900 hours of light 

soaking and the projected cost will be <20 cents/Wp. The I–V plot of the perovskite panel is computed by extrapolation 

from a 10 × 10 cm mini-module. 

 

solar cells. The energy loss ratio of VOC to the 

bandgap energy (Eg) in PSC is lower than that of 

silicon solar cells; therefore the power conversion 

efficiency of PSC competes with the performance 

of silicon solar cells. The perovskite materials 

have a potential to reach over 25% power 

conversion efficiency, and the PSC is recognized 

by The World Economic Forum (2016) as one of 

the top 10 new technologies11. 

 

Nevertheless, the drawback of perovskite solar 

cells are several: i) poor material stability under 

heat and light soaking conditions; ii) reduced 

control over device operation, i.e. hysteresis in the 
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current-voltage characteristic, still poorly 

understood;12 iii) material toxicity due to the 

presence of lead, and iv) device instability. To 

improve the stability, efforts in the optimization of 

pure CH3NH3PbI3 by compositional engineering 

of cations, e.g., the substitution of the methyl 

ammonium (MA) cation by formamidinium (FA), 

and anions, e.g., introducing a small amount of Br, 

are needed. The addition of excess lead iodide has 

indeed induced a breakthrough in device 

efficiency and reproducibility. A large variety of 

perovskite compositions, particularly the mixed 

cation/mixed halide (FAPbI3)0.85(MAPbBr3)0.15 

have been investigated, and recent developments 

even include triple cation structures containing 

cesium, MA, and FA to enhance the stability 

shown in Figure 3. A further advance in PSCs 

through significant innovation steps in material 

science, chemistry and device technology all 

combined could lead to a "paradigm shift" in the 

near-future energy sector. Perovskite solar cell 

using the hole conductor free configuration where 

the HTM layer is replaced by carbon, which acts 

as a contact electrode (see Figure 4). The J–V 

characteristic data computed from extrapolation 

from 10 × 10 cm mini-module perovskite panel is 

shown in Figure 4. Since this configuration holds 

the promise to be at present the cheapest and the 

most attractive solution among the perovskite 

photovoltaic architectures. The future is bright for 

perovskite materials with a demonstrated power 

conversion efficiency of 22%; PSCs could lead a 

revolution in power generation, storage, and 

consumption through truly green grid-free energy. 
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Abstract  

Soft robots, are mobile machines largely constructed from soft materials and have received much 

attention recently because they are opening new perspectives for robot design and control. This 

paper reports recent progress in the development of soft robots, more precisely, soft actuators and 

soft sensors. Soft actuators play an important role in functionalities of soft robots, and dielectric 

elastomers have shown great promise because of their considerable voltage-induced deformation. 

We developed soft inflated dielectric elastomer actuators and their networks, with the advantages 

to be highly deformable and continuously controllable. When it comes to control of soft robots, 

soft sensors are of great importance. We proposed a methodology to design, analyze, and fabricate 

a multi-axis soft sensor, made of dielectric elastomer, capable of detecting and decoupling 

compressive and shear loads with high sensitivity, linearity and stability. 

  

Index Terms: soft robots, soft actuators, soft sensors, dielectric elastomer 

 

1. Introduction 

Soft robotics has become a hot research field in 

the past decade. Rigid robots often encounter 

difficulties operating in unstructured and highly 

congested environments. On the contrary, the use 

of soft materials in robotics, driven not only by 

new scientific paradigms but also by many 

applications, is going to overcome these basic 

assumptions and makes the well-known theories 

poorly applicable, opening new perspectives for 

robot design and control.1 Rather than relying on 

sliding or rolling motion as in traditional 

mechanics, soft robots produce their mobility 

based on the deformation of elastic members. This 

enables the integration of multiple functions into 

simple topologies, by embedding soft actuators 

and soft sensors to build fully functional and 

distributed structures capable of complex tasks. 

 

 

 

Generally, a soft robot system includes soft bodies 

that may consist of elastic and/or rigid parts, soft 

actuators and soft sensors. A basic requirement of 

a soft robot is to generate large enough 

deformation, especially when the interaction with 

the environment is involved. The current 

examples of soft robots offer some solutions for 

actuation and control, though very first steps.2 The 

biggest challenges in soft robotics currently are 

the design and fabrication of soft bodies, 

development of robust soft actuators capable of 

withstanding large deformations and delivering 

considerable stiffness, and soft sensors applicable 

to complex loading conditions with a large 

detection range, etc. 

 

This paper will briefly report our recent progress 

in the development of soft actuators and soft 

sensors. Specifically, dielectric elastomer balloon-
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like actuators are developed, showing to be highly 

deformable and continuously controllable. Also, a 

multi-axis soft sensor is developed, made of 

dielectric elastomer, with the capability of 

detecting both compression and shear loads. 

 

2. Soft actuators 

Soft robots are able to operate with several 

different modes of actuation (say, pneumatic, 

electrical, etc). Dielectric elastomers, capable of 

deforming in response to an external electric field, 

have shown great promise for soft actuators due to 

their large voltage-induced deformation. Here we 

focus on dielectric elastomer actuators.3,4 

 

2.1. Networked dielectric elastomers actuators 

Balloon-like dielectric elastomer actuators have 

received much attention since the inside air of 

high pressure can provide prestretch to greatly 

improve the actuation performance.5 The 

deformation of dielectric elastomers, however, is 

strictly restricted because of material failures such 

as loss of tension and electric breakdown. With 

these regards, we developed networked dielectric 

elastomer balloon actuators, coated with 

compliant electrodes and interconnected via a 

rigid chamber, as shown in Figure 1. For the 

networked system, the input voltages are 

independently applied to the balloons, resulting in 

the output deformations of the balloons. The 

networked design is able to greatly postpone the 

occurrence of material failures and thus 

remarkably enlarge the actuation range.6 

 

Figure 1. Illustration of networked soft inflated 

actuators, interconnected via a chamber. Each 

actuator, coated with compliant electrodes on its 

surfaces, is independently connected to a high 

voltage. 

Figure 2 shows the overview of the experimental 

setup, and some experimental results. Initially the 

balloons are pumped until the net pressure reaches 

2kPa. Thereafter, the system is sealed and then 

voltages are applied. When only one balloon is 

activated, the activated balloon deforms largely 

(say, about 3 times the volume of the prestretched 

state), the inside pressure drops accordingly, and 

the others shrink (Figure. 2b). The underlying 

reason for large deformation is that the three 

passive chambers effectively slow down the drop 

of inside pressure, sustain the mechanical stresses 

of the actuated membrane, and thus postpone the 

occurrence of material failures. When three 

balloons are activated, the inner pressure drops 

and the unactivated balloon to shrinks greatly 

(almost flat, see Figure 2c). This actuation mode 

typically explores the minimum volume of the 

balloon. 

 

 

 

Figure 2. Experimental results: (a) system setup; (b) 

one balloon is activated; (c) three balloons are 

activated. 

 

2.2. Dielectric elastomer actuators for soft 

WaveHandling systems 

We developed a soft handling system, aiming to 

offer a soft solution to delicately transport and sort 

fragile items like fruits, vegetables, biological 

tissues in food and biological industries. The 

system consists of an array of hydrostatically 

coupled dielectric elastomer actuators. Figure 3 
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conceptually shows one ‘unit’ of the system, 

where one active dielectric elastomer and one 

passive membrane are coupled together via an air 

mass. When the dielectric film is activated by an 

external electric field, the passive membrane will 

deform accordingly, due to the variation of the 

internal pressure. The assembly of such ‘unit’ 

constitutes the WaveHandling system and the 

controls of multiple active membranes enable 

movements of the system (see Figure 4). 

 

 
Figure 3. Hydrostatically coupled dielectric 

elastomer actuators: (a) rest state and (b) activated 

state. 

 

 

 

Figure 4. A soft handling system transfers a ball 

from one location to another location. 

 

As a proof of design concept, a simply made 

prototype of the handling system is controlled to 

generate a parallel moving wave to manipulate a 

ball. The electric control, simple structure, 

lightweight and low cost of the soft handling 

system show great potential to move from 

laboratory to practical applications.7 

3. Soft sensors 

Soft sensors play an important role in control of 

soft robots, by providing feedbacks of 

deformations, forces, etc. There are mainly two 

popular avenues to convert the induced 

deformation to electrical signals: converting to 

resistance changes or converting to capacitance 

changes. The capacitance-based soft sensors show 

better performance in terms of accuracy and 

repeatability, and thus are adopted in this paper.  

 

To overcome the limitations of existing soft sensor 

designs—rigid electrodes, low sensitivity, limited 

detection range, and inability in decoupling multi-

axis loads, we proposed a methodology to design, 

analyze, and fabricate multi-axis soft sensor. The 

soft sensors each consist of four capacitor modules 

aligned in a 2×2 array. An isolated air chamber is 

embedded into each module to amplify the 

deformation (Figure 5a), resulting in an 

enhancement in the sensitivity. We investigated a 

compressive sensor8 (Figure 5b) and two types of 

multi-axis sensor, i.e. the circular type and 

rectangular type (Figures 5c and 5d)9. Figure 6 

shows the fabrication process and the prototypes, 

where the compressive sensor is made of Eco-Flex 

30 (Smooth-On), while the multi-axis soft sensors 

are composed of polydimethylsiloxane (PDMS). 

 

 

   

Figure 5. Soft sensor prototypes. (a) Loading 

conditions. (b) Compressive sensor. Multi-axis soft 

sensor of (b) circular prototype and (c) rectangular 

prototype.
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Figure 6. Fabrication process and samples. (a) Fabrication process of circular prototype. (b) Circular prototype. (c) 

Rectangular prototype. 

 

  
 

 

Figure 7. Experimental setup (a) and results for compression sensor (b), and multi-axis sensor under shear (c) and 

compression (d). 
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The experiments are carried out on the Mark-10 

testing system. Specifically, the concentrated 

compression loading condition is applied via a 

conical punch and the shear loading is applied via 

two plates wherein the sensor is sandwiched. 

Figure 7a shows an overview of the experimental 

setup, where the force gauge can measure the 

applied force (in forms of either compression or 

shear), and the LCR meter measures the 

capacitance of the soft sensor that keeps 

increasing with the applied force. 

 

Figures 7b-7d show the responses of the 

compressive sensor under compression and the 

multi-axis sensor under both compression and 

shear loading, where the circle design is denoted 

by ‘cir’, the rectangle design is denoted by ‘rect’, 

and l/t denotes the aspect ratio of the soft sensor 

and its value is determined empirically. It is 

specially noticed that the capacitance increases 

monotonously with the loading and shows good 

repeatability within a large enough detection 

range. 

 

4. Conclusion 
This paper has briefly reported our recent progress 

regarding soft robots, from the networked 

dielectric elastomer actuators and Wavehandling 

system driven by soft actuators, to soft sensors 

capable of detecting both compressive and 

shearing loadings. These advancements basically 

represent a further step toward the development of 

soft robots. In the future work, we hope to 

integrate the soft actuators and sensors into soft 

bodies to build soft robots in terms of specific 

functionalities, such as a soft gripper. 
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Abstract  

An oval shaped Kashmir Basin in NW Himalaya largely reflects the typical characteristics of 

Neogene-Quaternary piggyback basin that was formed as a result of the continent-continent 

collision of Indian and Eurasian plates. However, a new model shows that the basin was formed 

by a major dextral strike-slip fault (Central Kashmir Fault) that runs through the Kashmir basin. 

This model is not only unlikely but also structurally unrealistic, and poses problems with the 

geomorphology, geology, and tectonic setting of the Kashmir basin. Although Shah (2016) has 

clearly demonstrated that such a model is not feasible for Kashmir basin, however in this article 

initial works have been further strengthened, and we demonstrate through various evidence, which 

includes a structural analogue modeling work, that a pull apart basin formation through strike-slip 

faulting is impractical for Kashmir basin. Further we show that Central Kashmir Fault, a proposed 

major dextral strike-slip fault, could not possibly exist. 

  

Index Terms: pull-apart basin, Kashmir basin, NW Himalaya, Strike-slip fault 

 

 

1. Introduction   

Kashmir basin of NW Himalaya (Figure 1) is 

located ~100 km away from the Main Frontal 

thrust (MFT) fault, which is one of the major 

active south-verging fault systems in the region. 

The Zanskar shear zone (ZSZ), a major normal 

fault, lies to the northeast of the basin, whereas the 

Main Central thrust (MCT), the Main Boundary 

thrust (MBT), and the Raisi thrust (RT) systems 

respectively lie on its southwest1-2. This structural 

skeleton of the basin largely fits a piggyback-

deformation model because a series of thrusts lies 

to the south of the young Kashmir basin that sits 

on top of these faults3-4. Sedimentation in Kashmir 

basin has possibly commenced by ca. 4 Ma and 

resulted in deposition of >1300 m of sediments 

(known as Karewas) at inferred average rates of 

~16–64 cm/1000 yr3,5. These sediments are 

dominantly of fluvio-lacustrine and glacial 

origin6-8 and were deposited on basement rocks 

composed of Pennsylvanian–Permian Panjal 

volcanic series9 and Triassic limestone10. 

 

The Holocene sediments in Kashmir basin are 

recently broken, this is shown by a number of ~SE 

dipping faults, and this makes it a classic example 

of an out-of-sequence faulting in NW Himalaya11-

14. Although a piggy-back basin model seems to 

largely fit the tectonic evolution of Kashmir basin 

however Alam et al.15-16 have introduced a pull-

apart basin tectonic model where they suggest that 

Kashmir basin was formed as a result of a large 

dextral-strike-slip fault that runs ~ through the 

center of the basin. Such a model, however, is 

structurally impractical4 and the present work 

further shows why Kashmir basin could not fit a 

pull-apart basin tectonic setting as suggested by 

Alam et al.15. 

 

2. Tectonic and geological background   

The location of the basin is north of the MFT fault 

zone, the megathrust structure that accommodates 

a larger portion of the regional convergence 

between the Indian and Eurasian plates17,1, and is 

considered actively growing18-20.
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Figure 1. Regional tectonic setting of Kashmir basin, NW Himalaya (after Shah, 201614). MCT—Main Central thrust, 

MBT—Main Boundary thrust, MWT—Medlicott–Wadia thrust, and MFT—Main Frontal thrust. CMT—centroid 

moment tensor; GPS—global positioning system. 

 

Until now the surficial trace of the MFT has not 

been mapped in any part of the Jammu and 

Kashmir region, and thus it is assumed as a blind 

tectonic structure under Jammu 1, 14. Schiffman et 

al.17 have demonstrated that MFT fault is 

presently locked under the Kashmir region, and a 

major earthquake is anticipated in the future but 

the timing remain uncertain. A major active fault 

(Raisi fault) that runs under Raisi (Figure 1) is 

also considered to host a major earthquake1 in the 

future. And a third major fault runs approximately 

through the middle of the Kashmir valley (Figure 

1), which also has the potential to host a major 

earthquake, very similar to the Muzaferabad 

earthquake of 200513. Since most of the faults are 

~S-SW verging and Kashmir basin sits on these 

structures thus such a structural setting can be 

explained by a piggyback basin tectonic model8 

because a young basin sits on older faults. 

 

Moreover, the geological map (Figure 1) of 

Kashmir basin shows Upper Carboniferous-

Permian Panjal Volcanic Series and Triassic 

limestone are the foundation rocks on which 

~1,300-m thick sequence of Plio-Pleistocene 

fluvio-glacial sediments are deposited10. 

 

These sediments are mostly unconsolidated clays, 

sands, and conglomerates with lignite beds 

unconformably lying on the bedrock with a cover 

of recent river alluvium6,8. The bedrock geology 

indicates a deep marine depositional setting, 

where limestone could form, and later such a 

depositional environment was closed, faulted, and 
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Figure 2. Simplified geology, and structural map of Kashmir basin, NW Himalaya showing the major extent of the 

major dextral fault (Modified from Thakur et al., 2010, and Shah, 2013a, 2015a), MCT=Main Central Thrust, MBT 

=Main Boundary Thrust. The Central Kashmir fault (CKF) of Ahmad et al. 15 runs through the basin. 

 

uplifted. The formation of Kashmir basin followed 

the closure of such a setting, and later it was filled 

in with Plio-Pleistocene fluvio-glacial sediments 

are deposited8. A typical feature of a piggyback 

basin. 

 

3. Is pull-apart basin tectonic model possible 

for Kashmir basin? 

 

3.1. Structural evidence 

Central Kashmir Fault (CKF), a proposed major 

dextral fault of Alam et al.15, is argued to have 

formed the Kashmir basin through a pull-apart 

tectonic style. 

 

The strike-length of Kashmir basin is ~150 km, 

and the mapped length of the dextral strike-slip 

fault is ~165 km, which runs through the center of 

the basin - this however, is structurally unlikely 

(Figure 2). This is because if a major strike-slip 

fault produces a pull-apart basin, then the trace of 

that fault should not run through the middle of the 

basin; it will mostly likely run through the margins 

of the basin and always away from its center. 
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Figure 3. (A) Structures associated with a typical pull-apart basin setting. (B) Kashmir basin with mapped traces of 

active thrust faults (after Shah, 2013a12). (C) Shows the mapped trace of Central Kashmir Fault (CKF) and the 

associated horsetail structures. (D) A typical example of a dextral strike-slip fault system and a series of normal, 

oppositely verging faults that accompany such deformation pattern. (E) The mapped trace of the CKF which runs in 

the middle of the Kashmir basin - a proposed pull-apart basin, which is structurally not practical. 

 

Therefore, the proposed location of the major 

trace of the CKF through the center of the Kashmir 

basin (a pull-apart product of CKF) is thus 

unlikely. 

 

In addition to this, to form a ~165 km long basin 

usually- a series of ~SW, and ~NE dipping normal 

faults are required (Figure 3) in symmetrical 

extension. However, should the extension be 

asymmetrical, the normal faults would be 

expected to have either a ~SW or ~NE dipping 

fault planes or both. Typically, pull-apart tectonic 

movements will break the crust, extending it and 

later forming a series of normal faults. No 

evidence of such structures are reported in 

Kashmir basin in the expected orientation. And 

such structural setup will usually have a unique 

skeleton that could dominate the observed 

topography and geomorphology in an area with 

oppositely dipping normal faults. This, however, 

has not been reported in the Kashmir basin. 

Furthermore, the strike-length of the major 

dextral-strike slip faults is ~planar and 

contiguous; such geometry cannot cause extension 
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Figure 4. (A) An example of a typical dextral strike-slip fault system and the associated horsetail structures, (B) 3D 

view of what is shown in (A), (C) Kashmir basin with mapped traces of active thrust faults (after Shah, 2013a)22 and 

the major dextral strike slip fault of Ahmad et al. 15. (D) The orientation of horsetail structures of Ahmad et al.15 is 

unlikely for a major dextral-strike slip fault system that has ~ NW-SE strike (horsetails should be at angles to the fault). 

 

 

to form a pull-apart basin and on the contrary such 

basins are typical features of step-overs and 

linkage fault geometries21,4 (Figure 3). 

 

3.2. Horsetail splay faults 

When a major strike-slip fault zone terminates in 

brittle crust, the displacement is usually absorbed 

along small branching faults. These curve away 

from the strike of the main fault, and form an open, 

imbricate fan called a horsetail splay21. In a classic 

dextral strike-slip fault system such faults could be 

of certain restricted orientation with respect to the 

trace of the main fault (Figures 2 and 4). The 

orientation of the major strike-slip fault of 

Kashmir basin is reported to be ~NW-SE15, 16, and 

the horsetail faults, which appears as imbricate 

fans, are shown to be of the same orientation as 

the major fault (~NW-SE). This is not structurally 

possible (Figure 4) and it conflicts with the basic 

style of such faulting.). Technically, with the 

~NW-SE strike of the major fault, the imbricate 

fans will either have a SW strike with a NW 

tectonic transport, or NE strike with a SE tectonic 

transport (Figure 4c and Figure 4d). 

 

3.3. Geologic and geomorphic evidence 

The bedrock geology of Kashmir basin shows 

Upper Carboniferous-Permian Panjal Volcanic 

Series and Triassic limestone are covered by Plio-

Pleistocene fluvio-glacial sediments10. There is no 

evidence of a large scale topographic, or lithology 

offset which is typically associated with a major 

dextral strike-slip fault system. Shah12 mapped 

dextral offset of streams on the SE of Kashmir 

basin, however, minor (~20 to ~40 m) offset of 

these channels are interpreted to have resulted 

from the regional oblique convergence between 

India and Eurasia, and it does not suggest or 

approve of a major dextral strike slip fault system 

as reported by Alam et al.15.
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3.4. Geodetic evidence 

Shah22 mapped the eastern extent of the KBF fault 

and argued for a clear right-lateral strike-slip 

motion for a distance of ~1km which was shown 

by the deflection of young stream channels. The 

lateral offset was shown to vary from ~20 to ~40 

m. This was suggested to be a classical example 

of oblique convergence where thrusting is 

associated with a small component of dextral 

strike-slip motion. 

 

The recently acquired GPS data from Kashmir 

Himalaya17 confirms these observations, and 

further suggests an oblique faulting pattern 

wherein a range-normal convergence of 11±1 

mm/y is associated with a dextral-shear slip of 5±1 

mm/y (Figure 1). They also suggest that obliquity 

is more towards the eastern portion of the valley. 

This clearly suggests that the regional stress 

average vector is oblique in Kashmir Himalaya 

and, thus, the deformation is mainly absorbed by 

range-normal components, and less so by shear 

components—a typical feature of oblique 

convergence. Furthermore, in the case where the 

existence of Kashmir Central Fault is considered, 

the GPS data resolve on it show the dominance of 

normal convergence and not shearing parallel to 

the strike of this fault. 

 

The reason for there being more dextral slip 

towards SE of Kashmir basin is possibly because 

of the regional escape tectonics where India acts 

like an indenter and, hence, the crustal flow is 

mostly along the huge strike-slip faults23. It could 

possibly also mean that there might be some large-

scale unknown strike-slip faults in NW Himalaya. 

 

3.5. Paper model 

A map of Kashmir basin with the actual trace of 

the CKF15 shows that any strike-slip movement on 

it would produce a range of small sized pull-apart 

basins (Figure 5). Such basins are not visible in 

any portion of Kashmir basin along its strike 

length (Figure 1). 

 

Thus it is now established that a pull-apart genesis 

of Kashmir basin is unlikely because such a fault 

cannot pass through the basin; it ought to be at the 

margins. The paper model shows the possibility of 

at least 5 small pull-apart basins along the 

proposed trace of CKF and even at those regions 

the fault is not shown to cut through the basins but 

lie at their margins (Figure 5b). Such is what 

should be expected for a typical pull-apart basin. 

 

4. Discussion 

The present geological and structural architecture 

of Kashmir basin is largely consistent with a 

piggy-back model8 as Kashmir basin is riding on 

a number of ~SW verging thrust faults1,2 (Figure 

1). Presently, three major fault systems are 

considered active12, 13, 14, and from south these are 

Main Frontal Thrust (MFT), Medlicott-Wadie 

Thrust (MWT), and Kashmir Basin Fault (KBF). 

 

The new model of Alam et al.15 proposes a pull-

apart tectonic model where a major dextral strike-

slip fault (Central Kashmir Fault; CKF) is 

suggested to have formed the Kashmir basin 

through pull-apart movement (Figure 2). The 

~150 km long Kashmir Basin is cut through by the 

proposed dextral strike-slip fault for ~165 km. 

And, the fault is proposed to run though the center 

of the basin, which is unlikely (Figure 2). This has 

also been demonstrated by the paper model that 

shows a range of small pull-apart basins when 

CKF moves. The fault that produces the basin lies 

at its margins and does not cut through the basin 

(Figure 5b). Thus, it poses a strong structural 

problem for the pull-apart model. 

 

Furthermore, it is problematic to create the present 

structural skeleton of Kashmir basin by a major 

dextral strike-slip fault, even if it has an oblique 

slip component (Figures 3 and 4). This is because 

if a major dextral- slip is associated with a normal 

dip-slip component, which is shown by the pull-

apart model15, then the overall topography and 

geomorphology should ~ suggest subsidence on 

hanging-wall portions and relative uplift on foot-

wall portions. This requires two scenarios: a) the 

major fault must be dipping SSW or 2) NNE. The 

pull-apart model15 shows topographic depression 

on the right side of the major fault (NNE side), 

which requires a NNE dipping fault with a normal 

faulting component. However, the entire Kashmir 

basin tilts ~NE (Figure 1) and there is no evidence 

of regional normal faulting. Moreover, there is no
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Figure 5. (A) The actual trace of CKF after (Alam et al., 2015015. (B) A range of small pull-apart basins expected to 

form if CKF moves. 

 

reported topographic break or offset with a 

sufficient amount of slip required relative to the 

width and length of the Kashmir basin. There is 

also no evidence of a large scale strike-slip 

displacement of bedrock units3. 

 

The horsetail thrust structures (actually imbricate 

fans) of Alam et al.15 run parallel with the trend of 

the main fault trace (Figure 4) while they should 

be at angles to it if the fault was a dextral-slip fault. 

It is kinematically unlikely to have them on both 

sides of a major fault tip (Figure 4). It is equally 

unreasonable to have the trace of a major strike-

slip fault in the middle of a pull-apart basin 

(Figure 2). The structures mapped by Alam et 

al.15 are inconsistent with the orientation of a 

major dextral-strike-slip fault system and the 

associated imbricate fans cannot be possible with 

the proposed orientation of the CKF (Figure 3 and 

Figure 4). 

 

The examination of GPS data in Kashmir 

Himalaya17 shows an oblique faulting pattern, 

wherein a range-normal convergence of 11±1 

mm/y is associated with a dextral-shear slip of 5±1 

mm/y (Figure 1). When GPS data is resolved on 

the proposed CKF of Alam et al.15 it shows 

dominant normal convergence and no shearing 

parallel to the strike of this fault. This clearly 

suggests that such a structure cannot be an active 

major strike-slip fault (Figure 1). The structural 

architecture and the evidences presented above 
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suggest that Kashmir basin does not require a 

major strike-slip fault. The structures that have 

been shown in the pull-apart paper model indicate 

that such a big structure is not possible in Kashmir 

basin. Thus, the geological and tectonic setting of 

Kashmir basin is largely consistent with a piggy-

back model 8. 
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Abstract 

In this paper, the influence of Joule heating and magneto-hydrodynamics on mixed convection in 

a lid-driven cavity along with a heated hollow circular plate placed at the centre of the square cavity 

is investigated. The governing equations which are derived by considering the effects of both Joule 

heating and magneto-hydrodynamics are solved via the penalty finite-element method with the 

Galerkin-weighted residual technique. The effects of the Richardson number and Hartmann 

number arising from the MHD and Joule heating on the flow and heat transfer characteristics have 

been examined. The results show that the flow behavior, temperature distribution and heat transfer 

inside the cavity are strongly affected by the presence of the magnetic field. On the other hand, 

only the temperature distribution and heat transfer inside the cavity are strongly affected by the 

Joule heating parameter. The results also show that if the Hartmann number is increased from 5 to 

100 then the heat transfer detraction is 20%, and if the Joule heating parameter is increased from 1 

to 5 then the heat transfer detraction is 58%. In addition, multiple regressions among the various 

parameters are obtained. 

 

Index Terms: mixed convection, finite element method, lid-driven cavity, circular hollow plate, heat 

transfer detraction 

 

1. Introduction 
Mixed convection in a closed enclosure is a topic 

that has been studied extensively by researchers, 

especially those concerned with lid-driven cavity 

problems. This is because the topic has many 

applications in engineering and natural 

phenomena such as solar energy storage, growth 

of crystals, heat exchangers, cooling of electronic 

devices, food processing, atmospheric flows and 

drying technologies1-5. There are many research 

papers concerned with mixed convection in a lid-

driven cavity, and some of them are described in 

what follows. Oztop and Dagtekin6 numerically 

investigated mixed convection in a two-sided lid-

driven differentially heated square enclosure. 

Moallemi and Jang7 carried out a numerical 

investigation on the effects of Prandtl number on 

laminar mixed convection in a lid-driven cavity. 

Prasad and Koseff8 experimentally investigated 

mixed convection in a deep lid-driven cavity. 

Khanafer and Chamkha9 analyzed mixed 

convection in a lid-driven cavity that is filled with 

a fluid-saturated porous medium. Ji et al.10 

conducted a numerical and experimental 

investigation of mixed convection in a sliding lid-

driven cavity. Sharif11 studied mixed convection 

in shallow inclined driven enclosure with a top-

heated moving lid and cooled from below. Oztop 

et al.12 investigated mixed convection in lid-driven 

cavities with a solid vertical partition. Basak et 

al.13 investigated mixed convection between 

linearly heated side walls in a lid-driven porous 
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Nomenclature 

 
B0 magnetic induction () V dimensionless vertical velocity component 

cp specific heat (J kg-1 k-1) V0 lid velocity(ms-1) 

D diameter of the inner plate x horizontal coordinate (m) 

g gravitational acceleration (ms-2) X dimensionless horizontal coordinate 

Gr Grashof number y vertical coordinate (m) 

H enclosure height (m) Y dimensionless vertical coordinate 

Ha Hartmann number   

k thermal conductivity (Wm-1 k-1) Greek symbols 

K solid fluid thermal conductivity ratio α thermal diffusivity (m2s-1)  

J Joule heating parameter β thermal expansion coefficient (K-1) 

L length of the enclosure (m) μ dynamic viscosity (kg m-1 s-1) 

Nu  Nusselt number ν kinematic viscosity (m2 s-1) 

p dimensional pressure (kg m-1 s-2) θ non-dimensional temperature 

P dimensionless pressure ψ streamfunction 

Pr Prandtl number  fluid density (kg m-3) 

Re Reynolds number Subscripts 

Ri Richardson number av average 

T fluid temperature (K) h heat source 

u horizontal velocity component (ms-1) c cold 

U dimensionless horizontal velocity component f fluid 

v vertical velocity component (ms-1) s solid 

square enclosure. Sivasankaran et al.14 performed 

a numerical investigation of mixed convection in 

a lid-driven enclosure with non-uniform heating 

on both sidewalls. Kalteh et al.15 carried out a 

numerical investigation of steady laminar mixed 

convection in a nanofluid-filled lid-driven square 

enclosure with a triangular heat source. They 

revealed that the average Nusselt number can be 

increased by increasing the value of Reynolds 

number and decreasing the height of the heat 

source. Ismael et al.16 numerically studied steady 

laminar mixed convection in a water-filled square 

enclosure. They observed that convection was 

reduced at the critical values obtained for the 

partial slip parameter. In addition, the partial slip 

parameter had an insignificant effect on 

convection in the enclosure. 

Magneto-hydrodynamics (MHD) is nowadays an 

important field of study that is widely known for 

its usage in industrial applications such as metal 

casting, microelectronic devices, liquid metal 

cooling blankets for fusion reactors, turbulence 

control, crystal growth and heat and mass transfers 

control4,17. Some of the literature reviews 

concerned with MHD are as follows. Chamkha1 

performed a numerical investigation of 

hydromagnetic mixed convection with internal 

heat generation or absorption in a vertical lid-

driven enclosure. Al-Salem et al.4 numerically 

studied the effects of the moving top wall 

direction on MHD mixed convection in a square 

enclosure with a linearly heated bottom wall. They 

found out that when the magnetic field is 

increased, it reduces the heat transfer and the flow 
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intensity inside the cavity. Ahmed et al.5 

performed a numerical investigation of laminar 

MHD mixed convection in an inclined lid-driven 

square enclosure with an opposing thermal 

buoyancy force and sinusoidal temperature 

distributions on both vertical walls. They observed 

that increasing the Hartmann number resulted in 

an increasing heat transfer rate along the heated 

walls as well. Piazza and Ciofalo18 numerically 

investigated MHD natural convection in a liquid-

metal filled cubic cavity. Sankar et al.19 carried out 

an investigation of natural convection in the 

presence of a magnetic field in a vertical 

cylindrical annulus. Kahveci and Oztuna20 

performed an investigation of MHD natural 

convection in a cavity in the presence of a heated 

partition. Sarries et al.21 conducted a numerical 

investigation of MHD free convection in a 

laterally and volumetrically heated square 

enclosure. Oztop et al.22 numerically studied 

MHD buoyancy-induced flow in a non-

isothermally heated square cavity. Rahman et al.23 

carried out a numerical investigation of the 

conjugate effect of Joule heating and MHD mixed 

convection in an obstructed lid-driven square 

enclosure. They found that the strength of the 

magnetic field determines the heat transfer and 

fluid flow in the enclosure. Rahman et al.24 

numerically investigated the conjugate effect of 

Joule heating and MHD on double-diffusive 

mixed convection in a horizontal channel with an 

open enclosure. They observed that the Hartmann 

number has a considerable effect on the 

streamlines, isothermal lines, concentration and 

density contours. In addition, increasing the 

Hartmann number resulted in a decrease in the 

average Nusselt number at the heat source. Oztop 

et al.25 conducted a numerical investigation of 

MHD laminar mixed convection in a lid-driven 

square enclosure with a corner heater. They 

revealed that increasing the Hartmann number 

resulted in a decrease in the heat transfer. This 

means that the magnetic field is an important 

parameter that controls the heat transfer and fluid 

flow in the enclosure. Sivasankaran et al.26 carried 

out a numerical study of the effects of the 

sinusoidal boundary temperatures at the sidewalls 

on mixed convection in a lid-driven square 

enclosure in the presence of a magnetic field. They 

observed that the presence of the magnetic field 

largely determined the heat transfer and fluid flow 

in the enclosure. Farid et al.27 numerically 

investigated MHD mixed convection in a lid-

driven enclosure with a heated circular hollow 

cylinder placed at the centre. They discovered that 

increasing the Hartmann number caused the 

velocity of the flow to decrease thus resulting in 

decreases in the heat transfer and fluid flow 

intensity as well. Rahman et al.28 conducted a 

numerical study of MHD mixed convection in an 

open channel with a fully or partially heated 

square enclosure. Selimefendigil and Oztop29 

performed a numerical investigation of MHD 

mixed convection in a partially heated right-

angled triangular cavity, with an insulated rotating 

cylinder and filled with Cu-water nanofluid. They 

observed that the magnetic field caused the 

convection heat transfer to slow down and 

increasing the Hartmann number caused both the 

total entropy generation and the local and 

averaged heat transfer to decrease. Selimefendigil 

and Oztop30 numerically investigated MHD mixed 

convection in a lid-driven square cavity filled with 

nanofluid in a presence of a rotating cylinder. 

They found that the convective heat transfer and 

velocity field were slowed down by the magnetic 

field. Thus, increasing the Hartmann number 

caused the average heat transfer to decrease. In 

addition, the magnetic field acted as a parameter 

controlling the local heat transfer. 

 

The Joule heating parameter has received a 

considerable amount of attention lately, in 

particular in relation to MHD problems. Rahman 

et al.23 carried out a numerical investigation of the 

conjugate effect of Joule heating and MHD mixed 

convection in an obstructed lid-driven square 

enclosure. They discovered that the Joule heating 

parameter has considerable influence on the 

streamlines and isotherms. Rahman et al.24 

numerically investigated the conjugate effect of 

Joule heating and MHD on double-diffusive 

mixed convection in a horizontal channel with an 

open enclosure. They observed that the Joule 

heating parameter has an insignificant influence 

on the streamlines and concentration contours, but 

has considerable influence on the isotherms and 

density contours. Barletta and Celli31 analyzed the 
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effects of Joule heating and viscous dissipation on 

MHD mixed convection in a vertical channel. 

Mao et al.32 carried out an investigation of Joule 

heating in MHD flows in channels with thin 

conducting walls. Parvin and Hossain33 studied 

the conjugate effect of Joule heating and a 

magnetic field on mixed convection in a lid-driven 

enclosure with an undulated bottom surface. Ray 

and Chatterjee34 conducted a numerical 

investigation of MHD mixed convection in a 

horizontal lid-driven square enclosure with a 

circular solid object located at the centre and 

corner heaters with Joule heating. They found out 

that the Joule heating parameter only has a minor 

effect on the overall flow field inside the 

enclosure. Azad et al.35 performed a numerical 

investigation of the effects of Joule heating on the 

magnetic field and mixed convection inside a 

channel along with a cavity. Their results 

indicated that a higher Joule heating parameter 

resulted in reduced heat transfer. In addition, 

enhancing the Joule heating parameter caused the 

exit temperature to increase. Raju et al.36 

investigated MHD convective flow through a 

porous medium in a horizontal channel with an 

insulated and impermeable bottom wall in the 

presence of viscous dissipation and Joule heating.  

 

The main purpose of the present investigation is to 

examine the heat transfer detraction for conjugate 

effect of Joule heating and magneto-

hydrodynamics on mixed convection in a lid-

driven cavity along with a heated circular plate 

placed at the centre of the square enclosure for 

different values of the Hartmann number, 

Richardson number and Joule heating parameter. 

 

2. Problem Formulation 

2.1. Physical Modeling 

Figure 1 shows the computational domain of the 

enclosure considered in the study and the 

associated coordinate system. Here L and H 

represent the width and height of the enclosure 

respectively. The aspect ratio of the length to its 

height of the enclosure is unity, representing a 

square enclosure. In addition, D represents the 

diameter of the inner plate (D = 0.2L) and it is 

located at the center of the enclosure. The hollow 

plate is kept at a constant high temperature Th. The 

vertical walls of the enclosure are kept in a 

constant low temperature Tc , while the horizontal 

walls are adiabatic. The right vertical wall of the 

enclosure is moving upwards with constant 

velocity V0 in its own plane. A uniform magnetic 

field with constant magnitude B0 is applied 

horizontally, normal to the y-axis. Joule heating is 

also applied to the enclosure. The radiation, 

pressure work and viscous dissipation are all 

negligible. A no-slip boundary condition is 

imposed on all the walls of the enclosure and the 

plate surface.  

 

Figure 1. Schematic diagram of the physical model 
 

2.2. Mathematical Formulation 

With the following dimensionless variables: 

 

𝑋 =  
𝑥

𝐿
 ,  𝑌 =  

𝑦

𝐿
 ,  𝑈 =  

𝑢

𝑉0
 ,  𝑃 =  

𝑝

𝜌𝑉0
2 , 

𝜃 =
(𝑇−𝑇𝑐)

(𝑇ℎ−𝑇𝑐)
 ,  𝜃𝑠 =

(𝑇𝑠−𝑇𝑐)

(𝑇ℎ−𝑇𝑐)
 

 

the dimensionless forms of the governing 

equations for laminar, steady mixed convection 

based on the standard laws of conservation of 

mass, momentum and energy in the presence of 

hydromagnetic effects and Joule heating are given 

as: 

0









Y

V

X

U    (1) 

2 2

2 2

1U U P U U
U V

X Y X Re X Y

     
     

     

 (2) 

2 2 2

2 2

1V V P V V Ha
U V Ri V

X Y Y Re ReX Y


     
       

     

 (3) 

2 2
2

2 2

1
U V J V

X Y Re Pr X Y

       
    

    

 (4) 



Mathematics Scientia Bruneiana Vol. 16 2017 

22 
 

For the solid region:  

2 2

2 2
0

 
 

 

s s

X Y

 
 (5) 

where 
3 2 2 2 2 2 2

0 0 0 0, , , , ,       pRe V L Gr g TL Ha B L Pr Ri Gr Re J B LV C T         

3 2 2 2 2 2 2
0 0 0 0, , , , ,       pRe V L Gr g TL Ha B L Pr Ri Gr Re J B LV C T          

(here andh c pT T T k C     are the 

temperature difference and thermal diffusivity 

respectively) are the Reynolds number, Grashof 

number, Hartmann number, Prandtl number, 

Richardson number, and Joule heating parameter 

respectively. 

 

The dimensionless boundary conditions for the 

problem under consideration can be written as 

follows: 

 

At the left wall: 0, 0, 0U V      

 

At the right vertical wall: 0, 1, 0U V     

At the top and bottom walls: 0, 0, 0U V
N


  


  

At the inner surface of the hollow cylinder: 

0, 0, 1U V      

At the outer surface of the hollow cylinder: 

s

fluid solid

K
N N

    
   

    
  

where N is the non-dimensional distance in either 

the X or Y direction acting normal to the surface, 

and K = ks/kf is the thermal conductivity ratio.  

 

The average Nusselt number at the heated hollow 

cylinder in the cavity, based on the conduction 

contribution, may be expressed as 

0

2 
 


avNu d

N

 



  

And the average temperature in the cavity is 

defined as /av dV V   , where  is the cavity 

volume. 
 
The fluid motion is displayed using the stream 
function (𝜓) obtained from velocity components U 
and V. The relationship between the stream 
function and the velocity components for a two-
dimensional flow can be expressed as: 

,U V
Y X

  
  
     (6) 

 

3. Numerical Scheme 

3.1. Numerical Procedure 

The solutions of the governing equations along 

with boundary conditions are solved through the 

Galerkin finite-element formulation24. The 

continuum domain is divided into a set of non-

overlapping regions called elements. Six node 

triangular elements with quadratic interpolation 

functions for velocity as well as temperature and 

linear interpolation functions for pressure are 

utilized to discretize the physical domain. 

Moreover, interpolation functions in terms of local 

normalized element coordinates are employed to 

approximate the dependent variables within each 

element. Substitution of the obtained 

approximations into the system of the governing 

equations and boundary conditions yields a 

residual for each of the conservation equations. 

These residuals are reduced to zero in a weighted 

sense over each element volume using the 

Galerkin method. The resultant finite-element 

equations are nonlinear. These nonlinear algebraic 

equations are solved employing the Newton-

Raphson iteration technique. 

 

3.2. Grid Independency Test and Code Validation 

To establish the appropriate grid size, several grid 

size sensitivity tests were conducted in this 

geometry to determine the sufficiency of the mesh 

scheme and to make sure that the solutions are grid 

independent. The grid independent test are 

conducted for Ri = 1, Ha = 10 and J = 0.5 in the 

square lid-driven enclosure. Five different non-

uniform grid systems with the following numbers 

of elements within the resolution field – 4032, 

5794, 6116, 7270 and 8599 – are examined. In 

order to develop an understanding of the effects of 

the grid fineness, the average Nusselt number was 

calculated for each grid system as shown in 

Figure 2. The size of Nuav for 8599 elements 

shows little difference from the results obtained 

for the other elements. However, the grid 

independency test showed that a grid of 8599 

elements is enough for the desired accuracy of the 

results. 

V
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Figure 2. Grid independency study for average 

Nusselt number with Ha = 10, J = 0.5 and Ri = 1. 

 
Table 1. Comparison of the present data with of 

Chamkha1 for Ha 

Parameter 

Ha 

Present study 

Nu 

Chamkha1 

Nu 

0.0 2.206915 2.2692 

10.0 2.113196 2.1050 

20.0 1.820612 1.6472 

50.0 1.18616 0.9164 

 

To verify the accuracy of the numerical results and 

the validity of the mathematical model obtained in 

the present study, comparisons with the previously 

published results are necessary. But owing to the 

lack of availability of experimental data on the 

particular problem with its associated boundary 

conditions investigated here, validation of the 

predictions could not be done against experiment. 

However, the present numerical model can be 

compared with the documented numerical study 

of Chamkha1. The present numerical code was 

validated against the problem of mixed convection 

in a lid-driven enclosure studied by Chamkha1, 

which was investigated using a finite volume 

approach. The left wall moved upward with a 

fixed velocity and maintained in a cooled state. 

The right wall was heated whereas the two 

horizontal walls are adiabatic. We use the same 

boundary condition and wall temperatures on the 

horizontal walls of the cavity. We compared the 

results for average Nusselt number (at the hot  

 

wall) between the outcomes of the present code as 

shown in Table 1. From the comparison it can be 

observed that the results of present simulation 

agree well with the results of Chamkha1. 

 

4. Results and Discussion 

In this paper, a numerical investigation has been 

carried out to study the conjugate effect of Joule 

heating and magneto hydrodynamics on mixed 

convection in a lid-driven square cavity along with 

a heated hollow plate. The governing parameters 

used are the Hartmann number ranging from 5 ≤ 

Ha ≤ 100, the Richardson number ranging from 

0.1 ≤ Ri ≤ 5 and the Joule heating parameter 

ranging from 1 ≤ J ≤ 5. The Reynolds number, the 

solid fluid thermal conductivity ratio and the 

Prandtl number are fixed at Re = 100, K = 5 and 

Pr = 0.71. The numerical results are shown in the 

forms of streamlines, isotherms, average Nusselt 

number and average fluid temperature.  

 

4.1. Effects of the Hartmann number 

Figure 3 shows the effect of the Hartmann 

number on streamlines for J = 0.5 at different 

values of the Richardson number. In the forced 

convection dominated region at Ri = 0.1 and pure 

mixed convection dominated region at Ri = 1, the 

flow pattern and the flow strength are almost 

similar for all Ha values. In the forced and pure 

mixed convection dominated region for lower Ha 

values (= 5 and 20), a counter rotating cell 

appeared at the right corner which is generated by 

the moving right wall and as Ha increases to 50, 

the cell divided into two parts at which the cells 

then located near the top and bottom corner of the 

right wall. Both cells rotate in the same direction 

and have equal flow strength. When the Ha value 

increases to 100, the flow strength of the two cells 

decreases slightly from 0.02 to 0.01 in both forced 

and pure mixed convection dominated region. In 

the free convection dominated region at Ri = 5, the 

flow pattern changes dramatically for all Ha 

values. For the highest Ha value (Ha = 100), the 

two cells located at the right wall disappeared and 

four new cells are formed at the centre. All four 

cells rotate in the same direction. As Ha decreases 

to 50, two of the cells disappeared. The other two 
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Figure 3. Effects of Hartman number and Richardson number on streamlines for J = 0.5. 

 

cells which rotate counter clockwise remains at 

the centre near the left wall with equal flow 

strength. As Ha decreases to 20, multiple cells are 

formed. The two cells merge into one big cell 

which rotates counter clockwise and it is located 

near the left wall. Meanwhile, one cell is formed 

near the bottom corner of right wall which rotates 

counter clockwise and another cell is formed near 

the top right corner which rotates clockwise. At 

the lowest Ha value (Ha = 5), the pattern is more 

or less the same but with slightly higher flow 

strength.   
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Figure 4. Effects of Hartman number and Richardson number on isothermal lines for J = 0.5. 

 

The effect of Hartmann number on isotherms for 

J = 0.5 at different values of Richardson number 

is shown in Figure 4. When Ha = 50 and 100, it 

can be seen that the isothermal lines is almost 

parallel to the vertical walls for all Ri values. This 

means that conduction heat transfer is the most 

active here. The isothermal lines near the vertical 

walls are almost similar at Ri = 0.1 and 1 for lower 

values of Ha (= 5 and 20) where convective 

distortion of isothermal lines takes place. 

Meanwhile for Ri = 5, although the isothermal 

lines are almost parallel to the vertical walls for 

higher Ha values (= 50 and 100), the isotherms 

changes as Ha decreases. The isothermal lines are 
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accumulated towards the upper left wall for lower 

Ha values (= 5 and 20) indicating a dominant 

influence of the convective heat transfer at Ri = 5. 

Another interesting change in the isotherms is 

found with the increase of the Hartmann number 

around the plate.  

 

The effects of the Hartmann number on the 

average Nusselt number (Nuav) at the hot surface 

with the Richardson number is presented in 

Figure 5. The average Nusselt number at first 

decreases as the Ri value increases in the forced 

convection dominated region for lower Ha values 

(= 5, 20 and 50), then around Ri = 2 it starts to 

increase slowly for Ha = 20 and 50 and very 

rapidly for Ha = 5. But for Ha = 100, the average 

Nusselt number keeps decreasing steadily as Ri 

increases. In addition, the highest average Nusselt 

number is achieved at the lowest Ha value (= 5). 

 

 
Figure 5. Effects of Hartman number and 

Richardson number on average Nusselt number for J 

= 0.5. 

 

The effects of the Hartmann number on the 

average fluid temperature (θav) in the square 

enclosure with the Richardson number is 

presented in Figure 6. For Ha = 20 and 50, the 

average fluid temperature is almost constant in the 

forced convection dominated region with 

increasing Ri but in the natural convection 

dominated region , it increases slowly with 

increasing Ri and as it reaches Ri = 3, it starts to 

increase quickly. Meanwhile for Ha = 5, the 

average fluid temperature initially decrease in the 

forced convection dominated region as Ri 

increases but at Ri = 1, it starts to goes up rapidly 

with increasing Ri. For Ha = 100, as Ri increases, 

the average fluid temperature is unstable as it 

keeps increasing then decreasing at some point 

before it starts to increase again. In addition, the 

following multiple regression for the average 

Nusselt number in terms of the Richardson 

number and the Hartmann number was obtained: 
𝑁𝑢𝑎𝑣 = 0.0047𝑅𝑖 − 0.0014𝐻𝑎 + 1.2641  

 

Figure 6. Effects of Hartman number and 

Richardson number on average fluid temperature for 

J = 0.5. 

 

4.2. Effect of the Joule heating parameter 

The effect of the Joule heating parameter on 

streamlines for Ha = 10 at different values of the 

Richardson number is shown in Figure 7. In the 

forced convection dominated region at Ri = 0.1 

and pure mixed convection dominated region at Ri 

= 1, a counter rotating cell appeared at the right 

corner which is generated by the moving right 

wall for different J values In the forced and pure 

mixed convection dominated region, the flow 

pattern and the flow strength are almost similar for 

all values of J except that the cell near the right 

wall becomes much smaller in size in the pure 

mixed convection dominated region compared to 

the forced-convection dominated region. In the 

natural-convection dominated region at Ri = 5 for 

J = 1, the flow pattern is distorted. The previous 

cell is pushed towards the right wall and two new 

cells are formed. One counter-rotating cell is 

formed near the left wall which is the largest cell 

and another cell is formed near the top right corner 

which rotates clockwise. The flow pattern does 
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Figure 7. Effects of Joule heating parameter and Richardson number on streamlines for Ha = 10 

 

not change much as the J values increase (J = 2, 3 

and 5). Overall, this means that the Joule heating 

parameter has an insignificant effect on the 

streamlines. 

 

Figure 8 shows the effect of Joule heating 

parameter on isotherms for Ha = 10 at different 

values of the Richardson number. In the forced 

convection dominated region at Ri = 0.1 for lower 

values of J (=1 and 2), the isothermal lines reveals 

a convective distortion pattern, while for higher J 

values (=3 and 5) it can be seen that the isothermal 

lines are almost parallel to the vertical walls which 

means conductive heat transfer is active. In the 

pure mixed-convection dominated region at Ri = 1 

and J = 1, conductive distortion of the isothermal 
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Figure 8: Effects of Joule heating parameter and Richardson number on isothermal lines for Ha = 10. 

 

lines starts to appear near the top right corner. But 

it starts to disappear as the J values increase (for J 

= 2, 3 and 5) and the convective current becomes 

active. In the natural-convection dominated region 

at Ri = 5, the isothermal lines accumulate towards 

the upper left wall for all values of J, indicating 

the dominant influence of convective heat 

transfer. 

 

The effects of the Joule heating parameter on the 

average Nusselt number (Nuav) at the hot surface 

with the Richardson number are presented in  

J=
1
 

J=
2
 

J=
3

 
J=

5
 

Ri = 0.1 Ri = 1 Ri = 5 



Mathematics Scientia Bruneiana Vol. 16 2017 

29 
 

 

 

Figure 9. For higher J values (= 3 and 5), the 

average Nusselt number continuously decreases as 

Ri increases. On the other hand, the average 

Nusselt number initially decreases with increasing 

Ri, and when it reaches Ri = 3 it starts to go up 

faster for J = 1, but for J = 2 it increases more 

slowly. In addition, the highest average Nusselt 

number is achieved at the lowest J value (= 1) and 

the lowest average Nusselt number occurred at the 

highest J value (= 5). 

 

Figure 9. Effects of Joule heating parameters and 

Richardson number on average Nusselt number for 

Ha = 10 

 

Figure 10 presents the effects of the Joule heating 

parameter on the average fluid temperature (θav) in 

the square enclosure with the Richardson number. 

The average fluid temperature decreases very 

slightly with increasing Ri for all J values in the 

forced-convection dominated region, whereas in 

the natural-convection dominated region it 

increases very rapidly with increasing Ri for all 

values of J. The highest average fluid temperature 

is obtained at the highest J value (= 5). In addition, 

the following multiple regression for the average 

Nusselt number in terms of the Richardson 

number and Joule heating parameter was 

obtained: 
𝑁𝑢𝑎𝑣 = −0.0554𝑅𝑖 − 0.0999𝐽 + 1.4396  

 

 

 

 

 

 
Figure 10. Effects of Joule heating parameters and 

Richardson number on average temperature for Ha = 

10 

 

5. Conclusion 

MHD mixed convection in a lid-driven cavity with 

Joule heating and a heated hollow circular plate 

which is located at the centre of a square cavity 

has been numerically investigated over a wide 

ranges of various parameters such as the 

Hartmann number (5 ≤ Ha ≤ 100), Richardson 

number (0.1 ≤ Ri ≤ 5) and Joule heating parameter 

(1 ≤ J ≤ 5). From the investigation, the following 

conclusions can be made: 

 The magnetic parameter (the Hartmann 

number) has a significant effect on reducing the 

size and strength of the inner vortex in the flow 

field for all values of Ri. 

 A remarkable change in the isotherms around 

the plate is seen due as the Hartmann number 

increases for all Ri. 

 The average Nusselt number declines and the 

average fluid temperature increases as the 

Hartmann number increases. 

 The flow field is not influenced by the Joule 

heating parameter, but the isotherms near the 

plate are strongly influenced by J for all Ri. 

 The average Nusselt number decreases and the 

average fluid temperature increases as the Joule 

heating parameter increases for all Ri. 
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Abstract 

This survey introduces and motivates the foundations of the theory of locally convex cones which 

aims to generalize the well-established theory of locally convex topological vector spaces. We 

explain the main concepts, provide definitions, principal results, examples and applications. For 

details and proofs we generally refer to the literature. 

 

Index Terms: cone-valued functions, locally convex cones, Korovkin type approximation 

 

1. Introduction 

Endowed with suitable topologies, vector spaces 

yield rich and well-considered structures. Locally 

convex topological vector spaces in particular 

permit an effective duality theory whose study 

provides valuable insight into the spaces 

themselves. Some important mathematical 

settings, however – while close to the structure of 

vector spaces – do not allow subtraction of their 

elements or multiplication by negative scalars. 

Examples are certain classes of functions that may 

take infinite values or are characterized through 

inequalities rather than equalities.  They arise 

naturally in integration and in potential theory. 

Likewise, families of convex subsets of vector 

spaces which are of interest in various contexts do 

not form vector spaces. If the cancellation law 

fails, domains of this type may not even be 

embedded into larger vector spaces in order to 

apply results and techniques from classical 

functional analysis. They merit the investigation 

of a more general structure. 

 

The theory of locally convex cones as developed 

in [7] admits most of these settings. A topological 

structure on a cone is introduced using order-

theoretical concepts. Staying reasonably close to 

the theory of locally convex spaces, this approach 

yields a sufficiently rich duality theory including 

Hahn-Banach type extension and separation 

theorems for linear functionals. In this article we 

shall give an outline of the principal concepts of 

this emerging theory. We survey the main results 

including some yet unpublished ones and provide 

primary examples and applications. However, we 

shall generally refrain from supplying technical 

details and proofs but refer to different sources 

instead. 

 

2. Ordered cones and monotone linear 

functionals 

A cone is a set 𝑃 endowed with an addition 

 

(𝑎, 𝑏) → 𝑎 + 𝑏 
 

and a scalar multiplication 

 

(𝛼, 𝑎) → 𝛼𝑎 
 

for 𝑎 ∈ 𝑃 and real numbers 𝛼 ≥ 0. The addition is 

supposed to be associative and commutative, and 

there is a neutral element 0 ∈ 𝑃, that is: 

 

(𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) for all 𝑎, 𝑏, 𝑐 ∈ 𝑃 

𝑎 + 𝑏 = 𝑏 + 𝑎 for all 𝑎, 𝑏 ∈ 𝑃 

0 + 𝑎 = 𝑎 for all 𝑎 ∈ 𝑃 

 

For the scalar multiplication the usual associative 

and distributive properties hold, that is: 

 

𝛼(𝛽𝑎) = (𝛼𝛽)𝑎 for all 𝛼, 𝛽 ≥ 0 and 

𝑎 ∈ 𝑃 



Mathematics Scientia Bruneiana Vol. 16 2017 

32 
 

(𝛼 + 𝛽)𝑎 = 𝛼𝑎 + 𝛽𝑎 for all 𝛼, 𝛽 ≥ 0 and 

𝑎 ∈ 𝑃 

𝛼(𝑎 + 𝑏) = 𝛼𝑎 + 𝛼𝑏 
 

1𝑎 = 𝑎 

0𝑎 = 0 

for all 𝛼 ≥ 0 and 

𝑎, 𝑏 ∈ 𝑃  

for all 𝑎 ∈ 𝑃 

for all 𝑎 ∈ 𝑃 

 

Unlike the situation for vector spaces, the 

condition 0𝑎 = 0 needs to be stated independently 

for cones, as it is not a consequence of the 

preceding requirements (see [6]). The 

cancellation law, stating that 

 

(C)        𝑎 + 𝑐 = 𝑏 + 𝑐    implies that    𝑎 = 𝑏 

 

however, is not required in general. It holds if and 

only if the cone 𝑃 can be embedded into a real 

vector space. 

 

A subcone 𝑄 of a cone 𝑃 is a non-empty subset of 

𝑃 that is closed for addition and multiplication by 

non-negative scalars. 

 

An ordered cone 𝑃 carries additionally a reflexive 

transitive relation ≤ that is compatible with the 

algebraic operations, that is 

 

𝑎 ≤ 𝑏 implies that   𝑎 + 𝑐 ≤ 𝑏 + 𝑐  and  𝛼𝑎 ≤ 𝛼𝑏 

 

for all 𝑎, 𝑏, 𝑐 ∈ 𝑃 and 𝛼 ≥ 0. As equality in 𝑃 is 

obviously such an order, all our results about 

ordered cones will apply to cones without order 

structures as well. We provide a few examples: 

 

2.1 Examples.  (a)  In ℝ̅ = ℝ ∪ {+∞} we 

consider the usual order and algebraic operations, 

in particular 𝛼 + ∞ = +∞ for all 𝛼 ∈ ℝ̅, 𝛼 ∙
(+∞) = +∞ for all 𝛼 > 0 and 0 ∙ (+∞) = 0. 

 

(b)  Let 𝑃 be a cone. A subset 𝐴 of 𝑃 is called 

convex if 

𝛼𝑎 + (1 − 𝛼)𝑏 ∈ 𝐴 
 

whenever 𝑎, 𝑏 ∈ 𝐴 and 0 ≤ 𝛼 ≤ 1.We denote by 

𝐶𝑜𝑛𝑣(𝑃) the set of all non-empty convex subsets 

of 𝑃. With the addition and scalar multiplication 

defined as usual by 

 

𝐴 + 𝐵 = {𝑎 + 𝑏| 𝑎 ∈ 𝐴  and  𝑏 ∈ 𝐵} 

 

for 𝐴, 𝐵 ∈ 𝐶𝑜𝑛𝑣(𝑃), and 

 

𝑎𝐴 = {𝛼𝑎| 𝑎 ∈ 𝐴} 
 

for 𝐴 ∈ 𝐶𝑜𝑛𝑣(𝑃) and 𝛼 ≥ 0, it is easily verified 

that 𝐶𝑜𝑛𝑣(𝑃) is again a cone. Convexity is 

required to show that (𝛼 + 𝛽)𝐴 equals 𝛼𝐴 + 𝛽𝐴. 

The set inclusion defines a suitable order on 

𝐶𝑜𝑛𝑣(𝑃) that is compatible with these algebraic 

operations. The cancellation law generally fails 

for 𝐶𝑜𝑛𝑣(𝑃). 

 

(c) Let 𝑃 be an ordered cone, 𝑋 any non-empty set. 

For 𝑃-valued functions on 𝑋 the addition, scalar 

multiplication and order may be defined 

pointwise. The set 𝐹(𝑋, 𝑃) of all such functions 

again becomes an ordered cone for which the 

cancellation law holds if and only if it holds for 𝑃. 

 

A linear functional on a cone 𝑃 is a mapping 

𝜇: 𝑃 → ℝ̅ such that 

 

𝜇(𝑎 + 𝑏) = 𝜇(𝑎) + 𝜇(𝑏)    and    𝜇(𝛼𝑎) = 𝛼𝜇(𝑎) 

 

holds for all 𝑎, 𝑏 ∈ 𝑃 and 𝛼 ≥ 0. Note that linear 

functionals take only finite values in invertible 

elements of 𝑃. If 𝑃 is ordered, then  𝜇 is called 

monotone if 

 

𝑎 ≤ 𝑏    implies that    𝜇(𝑎) ≤ 𝜇(𝑏). 

 

In various places the literature deals with linear 

functionals on cones that take values in ℝ ∪ {−∞} 

(see [6]) instead. In vector spaces both approaches 

coincide, as linear functionals can take only finite 

values there, but in applications for cones the 

value +∞ arises more naturally. 

 

The existence of sufficiently many monotone 

linear functionals on an ordered cone is 

guaranteed by a Hahn-Banach type sandwich 

theorem whose proof may be found in [13] or in a 

rather weaker version in [7]. It is the basis for the 

duality theory of ordered cones. In this context, a 

sublinear functional on a cone 𝑃 is a mapping 𝑝 ∶
𝑃 → ℝ̅ such that 
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𝑝(𝛼𝑎) = 𝛼𝑝(𝑎)    and    𝑝(𝑎 + 𝑏) ≤ 𝑝(𝑎) + 𝑝(𝑏) 

 

holds for all  𝑎, 𝑏 ∈ 𝑃 and  𝛼 ≥ 0. Likewise, a 

superlinear functional on 𝑃 is a mapping 𝑞 ∶ 𝑃 →
ℝ̅ such that 

 

𝑞(𝛼𝑎) = 𝛼𝑞(𝑎)    and    𝑞(𝑎 + 𝑏) ≥ 𝑞(𝑎) + 𝑞(𝑏) 

holds for all  𝑎, 𝑏 ∈ 𝑃 and  𝛼 ≥ 0. Note that 

superlinear functionals can assume only finite 

values in invertible elements of 𝑃. 

 

It is convenient to use the pointwise order relation 

for functions 𝑓, 𝑔 on 𝑃; that is we shall write 𝑓 ≤
𝑔 to abbreviate 𝑓(𝑎) ≤ 𝑔(𝑎) for all 𝑎 ∈ 𝑃. 

 

2.2 Sandwich Theorem (algebraic).  Let 𝑃 be an 

ordered cone and let 𝑝 ∶ 𝑃 → ℝ̅  be a sublinear 

and 𝑞 ∶ 𝑃 → ℝ̅ a superlinear functional such that 

 

𝑞(𝑎) ≤ 𝑝(𝑏)    whenever    𝑎 ≤ 𝑏    for    𝑎, 𝑏 ∈ 𝑃. 

 

There exists a monotone linear functional  𝜇: 𝑃 →
ℝ̅ such that 𝑞 ≤ 𝜇 ≤ 𝑝. 

 

Note that the above condition for 𝑞 and 𝑝 is 

fulfilled if 𝑞 ≤ 𝑝 and if one of these functionals is 

monotone. The superlinear functional 𝑞 may 

however not be omitted altogether (or 

equivalently, replaced by one that also allows the 

value −∞) without further assumptions. (see 

Example 2.2 in [13].) 

 

3. Locally convex cones 

Because subtraction and multiplication by 

negative scalars are generally not available, a 

topological structure for a cone should not be 

expected to be invariant under translation and 

scalar multiplication. There are various equivalent 

approaches to locally convex cones as outlined in 

[7]. The use of convex quasiuniform structures is 

motivated by the following features of 

neighborhoods in a cone: With every ℝ̅-valued 

monotone linear functional 𝜇 on an ordered cone 

𝑃 we may associate a subset 

 

𝑣 = {(𝑎, 𝑏) ∈ 𝑃2| 𝜇(𝑎) ≤ 𝜇(𝑏) + 1} 
 

of 𝑃2 with the following properties: 

(U1) 𝑣 is convex. 

(U2) If 𝑎 ≤ 𝑏 for 𝑎, 𝑏 ∈ 𝑃,  then (𝑎, 𝑏) ∈ 𝑣. 

(U3) If (𝑎, 𝑏) ∈ 𝑣 and (𝑏, 𝑐) ∈ 𝜌𝑣 for 

 , 𝜌 > 0, then (𝑎, 𝑐) ∈ ( + 𝜌)𝑣. 

(U4) For every 𝑏 ∈ 𝑃 there is  ≥ 0 such that 

(0, 𝑏) ∈ 𝑣. 

 

Any subset 𝑣 of 𝑃2 with the above properties (U1) 

to (U4) qualifies as a uniform neighborhood for 𝑃, 

and any family 𝑉 of such neighborhoods fulfilling 

the usual conditions for a quasiuniform structure, 

that is: 

 

(U5) For 𝑢, 𝑣 ∈ 𝑉 there is 𝑤 ∈ 𝑉 such that 

𝑤  𝑢 ∩ 𝑣. 

(U6) 𝑣 ∈ 𝑉 for all 𝑣 ∈ 𝑉 and  > 0. 

 

generates a locally convex cone (𝑃, 𝑉) as 

elaborated in [7]. More specifically, 𝑉 creates 

three hyperspace topologies on 𝑃 and every 𝑣 ∈ 𝑉 

defines neighborhoods for an element 𝑎 ∈ 𝑃 by 

 

𝑣(𝑎) = {𝑏 ∈ 𝑃| (𝑏, 𝑎) ∈ 𝑣  for all   > 1} 

     in the upper topology 

(𝑎)𝑣 = {𝑏 ∈ 𝑃| (𝑎, 𝑏) ∈ 𝑣  for all   > 1} 
     in the lower topology 

𝑣(𝑎)𝑣 = 𝑣(𝑎) ∩ (𝑎)𝑣 
      in the symmetric topology 

 

However, it is convenient to think of a locally 

convex cone (𝑃, 𝑉) as a subcone of a full locally 

convex cone 𝑃̃,  i.e. a cone that contains the 

neighborhoods 𝑣 as positive elements (see [7], Ch. 

I). 

 

Referring to the order in 𝑃̃, the relation 𝑎 ∈ 𝑣(𝑏) 

may be reformulated as 𝑎 ≤ 𝑏 + 𝑣. This leads to a 

second and equivalent approach to locally convex 

cones that uses the order structure of a larger full 

cone in order to describe the topology of 𝑃 (for 

relations between order and topology we refer to 

[9]). Let us indicate how this full cone 𝑃̃ may be 

constructed (for details, see [7], Ch. I.5): For a 

fixed neighborhood 𝑣 ∈ 𝑉 set 

 

𝑃̃ = {𝑎  𝛼𝑣| 𝑎 ∈ 𝑃, 0 ≤ 𝑎 < +∞}. 
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We use the obvious algebraic operations on 𝑃̃ and 

the order 

 

𝑎  𝛼𝑣 ≤ 𝑏  𝛽𝑣 
 

if either 𝛼 = 𝛽 and 𝑎 ≤ 𝑏, or 𝛼 < 𝛽 and (𝑎, 𝑏) ∈
𝑣 for all  > 𝛽 − 𝛼. The embedding 𝑎 → 𝑎  0𝑣 

preserves the algebraic operations and the order of 

𝑃. The procedure for embedding a locally convex 

cone (𝑃, 𝑉) into a full cone (𝑃̃, 𝑉) that contains a 

whole system 𝑉 of neighborhoods as positive 

elements is similar and elaborated in Ch. I.5 of [7]. 

The quasiuniform structure of 𝑃 may then be 

recovered through the subsets 

 

{(𝑎, 𝑏) ∈ 𝑃2| 𝑎 ≤ 𝑏 + 𝑣}  𝑃2 

 

corresponding to the neighborhoods 𝑣 ∈ 𝑉. 

 

We shall in the following use this order-theoretical 

approach: We may always assume that a given 

locally convex cone (𝑃, 𝑉) is a subcone of a full 

locally convex cone (𝑃̃, 𝑉) that contains all 

neighborhoods as positive elements, and we shall 

use the order of the latter to describe the topology 

of 𝑃. The above conditions (U1) to (U6) for the 

quasiuniform structure on 𝑃 equivalently translate 

into conditions involving the order relation of 𝑃̃ as 

follows: 

 

(V1) 𝑣 ≥ 0 for all 𝑣 ∈ 𝑉. 

(V2) For 𝑢, 𝑣 ∈ 𝑉 there is 𝑤 ∈ 𝑉 such that 

 𝑤 ≤ 𝑢 and 𝑤 ≤ 𝑣. 

(V3) 𝑣 ∈ 𝑉 whenever 𝑣 ∈ 𝑉 and  > 0. 

(V4) For 𝑣 ∈ 𝑉 and every 𝑎 ∈ 𝑃 there is  ≥ 0 

such that 0 ≤ 𝑎 + 𝑣. 

 

Condition (V4) states that every element 𝑎 ∈ 𝑃 is 

bounded below. 

 

3.1 Examples.  (a)  The ordered cone ℝ̅ endowed 

with the neighborhood system 𝑉 = {𝜀 ∈ ℝ| 𝜀 >
0} is a full locally convex cone. For 𝑎 ∈ ℝ the 

intervals (−∞, 𝑎 + 𝜀] are the upper and the 

intervals [𝑎 − 𝜀, +∞] are the lower 

neighborhoods, while for 𝑎 = +∞ the entire cone 

ℝ̅ is the only upper neighborhood, and {+∞} is 

open in the lower topology. The symmetric 

topology is the usual topology on ℝ with +∞ as 

an isolated point. 

 

(b)  For the subcone ℝ̅+ = {𝑎 ∈ ℝ̅| 𝑎 ≥ 0} of ℝ̅ 

we may also consider the singleton neighborhood 

system 𝑉 = {0}. The elements of ℝ̅+ are 

obviously bounded below even with respect to the 

neighborhood 𝑣 = 0, hence ℝ̅+ is a full locally 

convex cone. For 𝑎 ∈ ℝ̅ the intervals (−∞, 𝑎] and 

[𝑎, +∞] are the only upper and lower 

neighborhoods, respectively. The symmetric 

topology is the discrete topology on ℝ̅+. 

 

(c)  Let (𝐸, 𝑉, ≤) be a locally convex ordered 

topological vector space, where 𝑉 is a basis of 

closed, convex, balanced and order convex 

neighborhoods of the origin in 𝐸. Recall that 

equality is an order relation, hence this example 

will cover locally convex spaces in general. In 

order to interpret 𝐸 as a locally convex cone we 

shall embed it into a larger full cone. This is done 

in a canonical way: Let 𝑃 be the cone of all non-

empty convex subsets of 𝐸, endowed with the 

usual addition and multiplication of sets by non-

negative scalars, that is 

 

𝛼𝐴 = {𝛼𝑎| 𝑎 ∈ 𝐴}    and     

𝐴 + 𝐵 = {𝑎 + 𝑏| 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} 
 

for  𝐴, 𝐵 ∈ 𝑃 and 𝛼 ≥ 0. We define the order on 

𝑃 by 

𝐴 ≤ 𝐵    if    𝐴  ↓ 𝐵 = 𝐵 + 𝐸− 
 

where 𝐸− = {𝑥 ∈ 𝐸| 𝑥 ≤ 0} is the negative cone 

in 𝐸. The requirements for an ordered cone are 

easily checked. The neighborhood system in 𝑃 is 

given by the neighborhood basis 𝑉  𝑃. We 

observe that for every 𝐴 ∈ 𝑃 and 𝑣 ∈ 𝑉 there is 

𝜌 > 0 such that 𝜌𝑣 ∩ 𝐴 ≠ ∅. This yields 0 ∈ 𝐴 +
𝜌𝑣. Therefore {0} ≤ 𝐴 + 𝜌𝑣, and every element  

𝐴 ∈ 𝑃 is indeed bounded below. Thus (𝑃, 𝑉) is a 

full locally convex cone. Via the embedding 𝑥 →
{𝑥} ∶ 𝐸 → 𝑃 the space 𝐸 itself is a subcone of 𝑃. 

This embedding preserves the order structure of 𝐸, 

and on its image the symmetric topology of 𝑃 

coincides with the given vector space topology of 

𝐸. Thus 𝐸 is indeed a locally convex cone, but not 

a full cone. 
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(d)  The preceding procedure can be applied to 

locally convex cones in general. Let (𝑃, 𝑉) be a 

locally convex cone and let 𝐶𝑜𝑛𝑣(𝑃) denote the 

cone of all non-empty convex subsets of 𝑃, 

endowed with the canonical order, that is 

 

𝐴 ≤ 𝐵    if for every    𝑎 ∈ 𝐴    there is    𝑏 ∈ 𝐵     

such that    𝑎 ≤ 𝑏 

 

for 𝐴, 𝐵  𝑃. The neighborhood 𝑣 ∈ 𝑉 is defined 

as a neighborhood for 𝐶𝑜𝑛𝑣(𝑃) by 

 

𝐴 ≤ 𝐵 + 𝑣    if for every  𝑎 ∈ 𝐴  there is  𝑏 ∈ 𝐵     

such that    𝑎 ≤ 𝑏 + 𝑣 

 

The requirements for a locally convex cone are 

easily checked for (𝐶𝑜𝑛𝑣(𝑃), 𝑉), and (𝑃, 𝑉) is 

identified with a subcone of (𝐶𝑜𝑛𝑣(𝑃), 𝑉). Other 

subcones of 𝐶𝑜𝑛𝑣(𝑃) that merit further 

investigation are those of all closed, closed and 

bounded, or compact convex sets in 𝐶𝑜𝑛𝑣(𝑃), 

respectively. Details on these and further related 

examples may be found in [7] and [17]. 

 

(e)  Let (𝑃, 𝑉) be a locally convex cone, 𝑋 a set 

and let 𝐹(𝑋, 𝑃) be the cone of all 𝑃-valued 

functions on 𝑋, endowed with the pointwise 

operations and order. If 𝑃̅ is a full cone containing 

both 𝑃 and 𝑉 then we may identify the elements 

𝑣 ∈ 𝑉 with the constant functions 𝑥 → 𝑣 for all 

𝑥 ∈ 𝑋, hence 𝑉 is a subset and a neighborhood 

system for 𝐹(𝑋, 𝑃̅). A function 𝑓 ∈ 𝐹(𝑋, 𝑃̅) is 

uniformly bounded below, if for every 𝑣 ∈ 𝑉 there 

is 𝜌 ≥ 0 such that 0 ≤ 𝑓 + 𝜌𝑣. These functions 

form a full locally convex cone (𝐹𝑏(𝑋, 𝑃̅), 𝑉), 

carrying the topology of uniform convergence. As 

a subcone, (𝐹𝑏(𝑋, 𝑃̅), 𝑉) is a locally convex cone. 

Alternatively, a more general neighborhood 

system 𝑉𝑌 for 𝐹(𝑋, 𝑃) may be created using a 

suitable family 𝑌 of subsets 𝑦 of 𝑋, directed 

downward with respect to set inclusion, and the 

neighborhoods 𝑣𝑦 for 𝑣 ∈ 𝑉 and 𝑦 ∈ 𝑌, defined 

for functions 𝑓, 𝑔 ∈ 𝐹(𝑋, 𝑃) as 

 

𝑓 ≤ 𝑔 + 𝑣𝑦    if    𝑓(𝑥) ≤ 𝑔(𝑥) + 𝑣 

for all  𝑥 ∈ 𝑦. 

 

In this case we consider the subcone 𝐹𝑏𝑦(𝑋, 𝑃) of 

all functions in 𝐹(𝑋, 𝑃) that are uniformly 

bounded below on the sets in 𝑌. Together with the 

neighborhood system 𝑉𝑌, it forms a locally convex 

cone. (𝐹𝑏𝑦(𝑋, 𝑃), 𝑉𝑌) carries the topology of 

uniform convergence on the sets in 𝑌. 

 

(f)  For 𝑥 ∈ ℝ̅ denote 𝑥+ = max {𝑥, 0} and 𝑥− =
min {𝑥, 0}. For 1 ≤ 𝑝 ≤ +∞ and a sequence 

(𝑥𝑖)𝑖∈ℕ in ℝ̅ let ‖𝑥𝑖‖𝑝 denote the usual 𝑙𝑝 norm, 

that is 

‖(𝑥𝑖)‖𝑝 = (∑|𝑥𝑖|
𝑝

∞

𝑖=1

)

(1/𝑝)

∈ ℝ̅ 

 

for 𝑝 < +∞, and 

 

‖(𝑥𝑖)‖∞ = sup{|𝑥𝑖||  i ∈ ℕ} ∈ ℝ̅. 

 

Now let 𝐶𝑝 be the cone of all sequences (𝑥𝑖)𝑖∈ℕ in 

ℝ̅ such that ‖(𝑥𝑖)‖𝑝 < +∞ . We use the pointwise 

order in 𝐶𝑝 and the neighborhood system 𝑉𝑝 =

{𝜌𝑣𝑝| 𝜌 > 0}, where 

 

(𝑥𝑖)𝑖∈ℕ ≤ (𝑦𝑖)𝑖∈ℕ + 𝜌𝑣𝑝 

 

means that ‖(𝑥𝑖 − 𝑦𝑖)
+‖𝑝 ≤ 𝜌. (In this expression 

the 𝑙𝑝 norm is evaluated only over the indices 𝑖 ∈
ℕ for which 𝑦𝑖 < +∞.) It can be easily verified 

that (𝐶𝑝, 𝑉𝑝) is a locally convex cone. In fact 

(𝐶𝑝, 𝑉𝑝) can be embedded into a full cone 

following a procedure analogous to that in 2.1 (c). 

The case for 𝑝 = +∞ is of course already covered 

by Part (d). 

 

4. Continuous linear functionals and Hahn-

Banach type theorems 

A linear functional 𝜇 on a locally convex cone 

(𝑃, 𝑉) is said to be (uniformly) continuous with 

respect to a neighborhood 𝑣 ∈ 𝑉 if  

 

𝜇(𝑎) ≤ 𝜇(𝑏) + 1    whenever    𝑎 ≤ 𝑏 + 𝑣. 

 

Continuity implies that the functional 𝜇 is 

monotone, even with respect to the global 

preorder ≲, and takes only finite values in 

bounded elements 𝑏 ∈ ℬ (see Section 5 below). 
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The set of all linear functionals 𝜇 on 𝑃 which are 

continuous with respect to a certain neighborhood 

𝑣 is called the polar of 𝑣 in 𝑃 and denoted by 𝑣𝑃
○ 

(or 𝑣○ for short). Endowed with the canonical 

addition and multiplication by non-negative 

scalars, the union of all polars 𝑣○ for 𝑣 ∈ 𝑉 forms 

the dual cone 𝑃∗ of 𝑃. 

 

We may now formulate a topological version of 

the sandwich theorem (Theorem 3.1 in [13]) for 

linear functionals: Generalizing our previous 

notion we define an extended superlinear 

functional on 𝑃 as a mapping 

 

𝑞: 𝑃 → ℝ̅ = ℝ ∪ {+∞, −∞} 

 

such that 𝑞(𝛼𝑎) = 𝛼𝑞(𝑎) holds for all 𝑎 ∈ 𝑃 and 

𝛼 ≥ 0 and 

 

𝑞(𝑎 + 𝑏) ≥ 𝑞(𝑎) + 𝑞(𝑏)    whenever    

𝑞(𝑎), 𝑞(𝑏) > −∞ 
 

(We set 𝛼 + (−∞) = −∞ for all 𝛼 ∈ ℝ ∪ {−∞},  

𝛼 ∙ (−∞) = −∞ for all 𝛼 > 0 and 0 ∙ (−∞) = 0 

in this context.) 

 

4.1 Sandwich Theorem (topological).  Let 

(𝑃, 𝑉) be a locally convex cone, and let 𝑣 ∈ 𝑉. 

For a sublinear functional 𝑝 ∶ 𝑃 → ℝ̅ and an 

extended superlinear functional 𝑞 ∶ 𝑃 → ℝ̅ there 

exists a linear functional 𝜇 ∈ 𝑣○ such that 𝑞 ≤
𝜇 ≤ 𝑝 if and only if 

 

𝑞(𝑎) ≤ 𝑝(𝑏) + 1    holds whenever    𝑎 ≤ 𝑏 + 𝑣 

 

Recall that every monotone linear functional 𝜇 on 

an ordered cone 𝑃 gives rise to a uniform 

neighborhood 𝑣 = {(𝑎, 𝑏) ∈ 𝑃2| 𝜇(𝑎) ≤ 𝜇(𝑏) +
1} which in turn may be used to define a locally 

convex structure on 𝑃. Thus, the condition for 𝑝 

and 𝑞 in Theorem 4.1 for some neighborhood 𝑣 is 

necessary and sufficient for the existence of a 

monotone linear functional 𝜇 on 𝑃 such that 𝑞 ≤
𝜇 ≤ 𝑝. 

 

Citing from [13] we mention a few corollaries. A 

set 𝐶  𝑃 is called increasing resp. decreasing, if  

𝑎 ∈ 𝐶 whenever 𝑐 ≤ 𝑎 resp. 𝑎 ≤ 𝑐 for 𝑎 ∈ 𝑃 and 

some 𝑐 ∈ 𝐶. A convex set 𝐶  𝑃 such that 0 ∈ 𝐶 

is called left-absorbing if for every 𝑎 ∈ 𝑃 there are 

𝑐 ∈ 𝐶 and  ≥ 0 such that 𝑐 ≤ 𝑎. 

 

4.2 Corollary.  Let 𝑃 be an ordered cone. For a 

sublinear functional 𝑝 ∶ 𝑃 → ℝ̅ there exists a 

monotone linear functional 𝜇 ∶ 𝑃 → ℝ̅ such that 

𝜇 ≤ 𝑝 if and only if 𝑝 is bounded below on some 

increasing left-absorbing convex set 𝐶  𝑃. 

 

An ℝ̅-valued function 𝑓 defined on a convex 

subset 𝐶 of a cone 𝑃 is called convex if 

 

𝑓(𝑐1 + (1 − )𝑐2) ≤ 𝑓(𝑐1) + (1 − )𝑓(𝑐2) 
 

holds for all 𝑐1, 𝑐2 ∈ 𝐶 and  ∈ [0,1]. Likewise, an 

ℝ̅-valued function 𝑔 on 𝐶 is concave if 

 

𝑔(𝑐1 + (1 − )𝑐2) ≥ 𝑔(𝑐1) + (1 − )𝑔(𝑐2) 

 

holds for all 𝑐1, 𝑐2 ∈ 𝐶 such that 𝑔(𝑐1), 𝑔(𝑐2) >
−∞ and  ∈ [0,1]. An affine function ℎ ∶ 𝐶 → ℝ̅ 

is both convex and concave. A variety of 

extension results for linear functionals may be 

derived from Theorem 4.1 in [13]. We cite: 

 

4.3 Extension Theorem. Let (𝑃, 𝑉) be a locally 

convex cone, 𝐶 and 𝐷 non-empty convex subsets 

of 𝑃, and let 𝑣 ∈ 𝑉. Let 𝑝 ∶ 𝑃 → ℝ̅ be a sublinear 

and 𝑞 ∶ 𝑃 → ℝ̅ an extended superlinear 

functional. For a convex function 𝑓 ∶ 𝐶 → ℝ̅ and 

a concave function 𝑔 ∶ 𝐷 → ℝ̅ there exists a 

monotone linear functional 𝜇 ∈ 𝑣○ such that 

 

𝑞 ≤ 𝜇 ≤ 𝑝,    𝑔 ≤ 𝜇  on 𝐷    and    𝜇 ≤ 𝑓  on 𝐶 

 

if and only if 

 

𝑞(𝑎) + 𝜌𝑔(𝑑) ≤ 𝑝(𝑏) + 𝜎𝑓(𝑐) + 1    holds 

whenever    𝑎 + 𝜌𝑑 ≤ 𝑏 + 𝜎𝑐 + 𝑣 

 

for 𝑎, 𝑏 ∈ 𝑃, 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷 and 𝜌, 𝜎 > 0 such that 

𝑞(𝑎), 𝜌𝑔(𝑑) > −∞. 

 

The generality of this result allows a wide range 

of special cases. If 𝑔 ≡ −∞, for example, we have 

to consider the condition of Theorem 4.3 only for 

𝜌 = 0, if 𝑓 ≡ +∞ only for 𝜎 = 0, and if both 𝑔 ≡
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−∞ and 𝑓 ≡ +∞, then Theorem 4.3 reduces to the 

previous Sandwich Theorem 4.1. Another case of 

particular interest occurs when 𝐶 = 𝐷 and 𝑓 = 𝑔 

is an affine function, resp. a linear functional if 𝐶 

is a subcone of 𝑃. The latter, with the choice of 

𝑝(𝑎) = +∞ and 𝑞(𝑎) = −∞ for all 0 ≠ 𝑎 ∈ 𝑃 

yields the Extension Theorem II.2.9 from [7]: 

 

4.4 Corollary.  Let (𝐶, 𝑉) be a subcone of the 

locally convex cone (𝑃, 𝑉). Every continuous 

linear functional on 𝐶 can be extended to a 

continuous linear functional on 𝑃; more precisely: 

For every 𝜇 ∈ 𝑣𝐶
○ there is 𝜇 ∈ 𝑣𝑃

○ such that 𝜇 

coincides with 𝜇 on 𝐶. 

 

The range of all continuous linear functionals that 

are sandwiched between a given sublinear and an 

extended superlinear functional is described in 

Theorem 5.1 in [13]. 

 

4.5 Range Theorem.  Let (𝑃, 𝑉) be a locally 

convex cone. Let 𝑝 and 𝑞 be sublinear and 

extended superlinear functionals on 𝑃 and 

suppose that there is at least one linear functional 

𝜇 ∈ 𝑃∗ satisfying 𝑞 ≤ 𝜇 ≤ 𝑝. Then  for all 𝑎 ∈ 𝑃 

we have 

 

sup𝜇∈𝑃∗,𝑞≤𝜇≤𝑝𝜇(𝑎)

= sup𝑣∈𝑉inf{𝑝(𝑏) − 𝑞(𝑐)| 𝑏, 𝑐
∈ 𝑃, 𝑞(𝑐) ∈ ℝ, 𝑎 + 𝑐 ≤ 𝑏 + 𝑣} 

 

For all 𝑎 ∈ 𝑃 such that 𝜇(𝑎) is finite for at least 

one 𝜇 ∈ 𝑃∗ satisfying 𝑞 ≤ 𝜇 ≤ 𝑝 we have 

 

inf𝜇∈𝑃∗,𝑞≤𝜇≤𝑝𝜇(𝑎)

= inf𝑣∈𝑉sup{𝑞(𝑐) − 𝑝(𝑏)| 𝑏, 𝑐
∈ 𝑃, 𝑝(𝑏) ∈ ℝ, 𝑐 ≤ 𝑎 + 𝑏 + 𝑣} 

 

As another consequence of the Extension 

Theorem 4.3 we obtain the following result 

(Theorem 4.5 in [13]) about the separation of 

convex subsets by monotone linear functionals: 

 

4.6 Separation Theorem.  Let 𝐶 and 𝐷 be non-

empty convex subsets of a locally convex cone 

(𝑃, 𝑉). Let 𝑣 ∈ 𝑉 and 𝛼 ∈ ℝ. There exists a 

monotone linear functional 𝜇 ∈ 𝑣○ such that 

 

𝜇(𝑐) ≤ 𝛼 ≤ 𝜇(𝑑)    for all  𝑐 ∈ 𝐶  and  𝑑 ∈ 𝐷 

 

if and only if 

 

𝛼𝜌 ≤ 𝛼𝜎 + 1    whenever    𝜌𝑑 ≤ 𝜎𝑐 + 𝑣 

 

for all 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷 and 𝜌, 𝜎 ≥ 0. 

 

5. The weak preorder and the relative 

topologies 

We also consider a (topological and linear) closure 

of the given order on a locally convex cone, called 

the weak preorder ≼ which is defined as follows 

(see I.3 in [17]): We set 

 

𝑎 ≼ 𝑏 + 𝑣    for  𝑎, 𝑏 ∈ 𝑃  and  𝑣 ∈ 𝑉 

 

if for every 𝜀 > 0 there is 1 ≤ 𝛾 ≤ 1 + 𝜀 such that 

𝑎 ≤ 𝛾𝑏 + (1 + 𝜀)𝑣, and set 

𝑎 ≼ 𝑏 
 

if 𝑎 ≼ 𝑏 + 𝑣 for all 𝑣 ∈ 𝑉. This order is clearly 

weaker than the given order, that is 𝑎 ≤ 𝑏 or 𝑎 ≤
𝑏 + 𝑣 implies 𝑎 ≼ 𝑏 or 𝑎 ≼ 𝑏 + 𝑣. Importantly, 

the weak preorder on a locally convex cone is 

entirely determined by its dual cone 𝑃∗, that is 𝑎 ≼
𝑏 holds if and only if 𝜇(𝑎) ≤ 𝜇(𝑏) for all 𝜇 ∈ 𝑃∗, 

and 𝑎 ≼ 𝑏 + 𝑣 if and only 𝜇(𝑎) ≤ 𝜇(𝑏) + 1 for 

all 𝜇 ∈ 𝑣○ (Corollaries I.4.31 and I.4.34 in [17]). 

If endowed with the weak preorder (𝑃, 𝑉) is again 

a locally convex cone with the same dual 𝑃∗. 

 

While all elements of a locally convex cone are 

bounded below, they need not be bounded above. 

An element 𝑎 ∈ 𝑃 is called bounded (above) (see 

[7], I.2.3) if for every 𝑣 ∈ 𝑉 there is  > 0 such 

that 𝑎 ≤ 𝑣. By ℬ we denote the subcone of 𝑃 

containing all bounded elements. ℬ is indeed a 

face of 𝑃, as 𝑎 + 𝑏 ∈ ℬ for 𝑎, 𝑏 ∈ 𝑃 implies that 

both 𝑎, 𝑏 ∈ ℬ. Clearly all invertible elements of 𝑃 

are bounded, and bounded elements satisfy a 

modified version of the cancellation law (see [17], 

I.4.5), that is 

 

(C)        𝑎 + 𝑐 ≼ 𝑏 + 𝑐  for  𝑎, 𝑏 ∈ 𝑃  and  𝑐 ∈ ℬ    

implies    𝑎 ≼ 𝑏 

 

We quote Theorem I.3.3 from [17]: 
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5.1 Representation Theorem.  A locally convex 

cone (𝑃, 𝑉) endowed with its weak preorder can 

be represented as a locally convex cone of ℝ̅-

valued functions on some set 𝑋, or equivalently as 

a locally convex cone of convex subsets of some 

locally convex ordered topological vector space. 

 

The previously introduced upper, lower and 

symmetric locally convex cone topologies for a 

locally convex cone (𝑃, 𝑉) prove to be too 

restrictive for the concept of continuity of 𝑃-

valued functions, since for unbounded elements 

even the scalar multiplication turns out to be 

discontinuous (see I.4 in [17]). This is remedied 

by using the coarser (but somewhat cumbersome) 

relative topologies on 𝑃 instead. These topologies 

are defined using the weak preorder on 𝑃: 

 

The upper, lower and symmetric relative 

topologies on a locally convex cone (𝑃, 𝑉) are 

generated by the neighborhoods 𝑣𝜀(𝑎), (𝑎)𝑣𝜀 and 

𝑣𝜀
𝑠(𝑎) = 𝑣𝜀(𝑎) ∩ (𝑎)𝑣𝜀, respectively, for 𝑎 ∈ 𝑃, 

𝑣 ∈ 𝑉 and 𝜀 > 0, where 

 

𝑣𝜀(𝑎) = {𝑏 ∈ 𝑃| 𝑏 ≤ 𝛾𝑎 + 𝜀𝑣  for some   
1 ≤ 𝛾 ≤ 1 + 𝜀} 

(𝑎)𝑣𝜀 = {𝑏 ∈ 𝑃| 𝑎 ≤ 𝛾𝑏 + 𝜀𝑣  for some   
1 ≤ 𝛾 ≤ 1 + 𝜀} 

 

The relative topologies are locally convex but not 

necessarily locally convex cone topologies in the 

sense of Section 3 (for details see I.4 in [17]), since 

the resulting uniformity need not be convex. 

These topologies are generally coarser, but locally 

coincide on bounded elements with the given 

upper, lower and symmetric topologies on 𝑃 and 

render the scalar multiplication (with scalars other 

than zero) continuous. The symmetric relative 

topology is known to be Hausdorff if and only if 

the weak preorder on 𝑃 is antisymmetric 

(Proposition I.4.8 in [17]). If 𝑃 is a locally convex 

topological vector space, then all of the above 

topologies coincide with the given topology. 

 

6. Boundedness and connectedness components 

The details for this section can be found in [16]. 

Two elements 𝑎 and 𝑏 of a locally convex cone 

(𝑃, 𝑉) are bounded relative to each other if for 

every 𝑣 ∈ 𝑉 there are 𝛼, 𝛽, , 𝜌 ≥ 0 such that both 

 

𝑎 ≤ 𝛽𝑏 + 𝑣    and    𝑏 ≤ 𝛼𝑎 + 𝜌𝑣 

 

This notion defines an equivalence relation on 𝑃 

and its equivalence classes ℬ𝑠(𝑎) are called the 

(symmetric) boundedness components of 𝑃. 

Propositions 5.3, 5.4, 5.6 and 6.1 in [16] state: 

 

6.1 Proposition.  The boundedness components of 

a locally convex cone (𝑃, 𝑉) are closed for 

addition and multiplication by strictly positive 

scalars. They satisfy a version of the cancellation 

law, that is 

𝑎 + 𝑐 ≼ 𝑏 + 𝑐 
 

for elements 𝑎, 𝑏 and 𝑐 of the same boundedness 

component implies that 

 

𝑎 ≼ 𝑏. 

 

6.2 Proposition.  The boundedness components of 

a locally convex cone (𝑃, 𝑉) furnish a partition of 

𝑃 into disjoint convex subsets that are closed and 

connected in the symmetric relative topology. 

They coincide with the connectedness components 

of 𝑃. 

 

If the neighborhood system 𝑉 consists of the 

positive multiples of a single neighborhood, 𝑃 is 

locally connected and its connectedness 

components are also open. 

 

7. Continuous linear operators 

For cones 𝑃 and 𝑄 a mapping 𝑇 ∶ 𝑃 → 𝑄  is called 

a linear operator if 

 

𝑇(𝑎 + 𝑏) = 𝑇(𝑎) + 𝑇(𝑏)    and    

 𝑇(𝛼𝑎) = 𝛼𝑇(𝑎) 

 

hold for all 𝑎, 𝑏 ∈ 𝑃 and 𝛼 ≥ 0. If both 𝑃 and 𝑄 

are ordered, then 𝑇 is called monotone if 

 

𝑎 ≤ 𝑏    implies    𝑇(𝑎) ≤ 𝑇(𝑏). 
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If both (𝑃, 𝑉) and (𝑄, 𝑊) are locally convex 

cones, then 𝑇 is said to be (uniformly) continuous 

if for every 𝑤 ∈ 𝑊 one can find 𝑣 ∈ 𝑉 such that 

 

𝑇(𝑎) ≤ 𝑇(𝑏) + 𝑤    whenever    𝑎 ≤ 𝑏 + 𝑣 

 

for 𝑎, 𝑏 ∈ 𝑃. A set 𝑇̂ of linear operators is called 

equicontinuous if the above condition holds for 

every 𝑤 ∈ 𝑊 with the same 𝑣 ∈ 𝑉 for all 𝑇 ∈ 𝑇̂. 

Uniform continuity for an operator implies 

monotonicity with respect to the global preorders 

on 𝑃 and on 𝑄 that is: if 

 

𝑎 ≤ 𝑏 + 𝑣  for all  𝑣 ∈ 𝑉,    then 

𝑇(𝑎) ≤ 𝑇(𝑏) + 𝑤  for all  𝑤 ∈ 𝑊 

 

In this context, a linear functional is a linear 

operator 𝜇 ∶ 𝑃 → ℝ̅, and the above notion of 

continuity conforms to the preceding one (see 

Section 4). Moreover, for two continuous linear 

operators 𝑆 and 𝑇 from 𝑃 into 𝑄 and for  ≥ 0, the 

sum 𝑆 + 𝑇 and the multiple 𝑇 are again linear 

and continuous. Thus the continuous linear 

operators from 𝑃 into 𝑄 again form a cone. The 

adjoint operator 𝑇∗ of 𝑇 ∶ 𝑃 → 𝑄 is defined by 

 

(𝑇∗())(𝑎) = (𝑇(𝑎)) 

 

for all  ∈ 𝑄∗ and 𝑎 ∈ 𝑃. Clearly 𝑇∗() ∈ 𝑃∗, and 

𝑇∗ is a linear operator from 𝑄∗ to 𝑃∗; more 

precisely: If for 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 we have 

𝑇(𝑎) ≤ 𝑇(𝑏) + 𝑤 whenever 𝑎 ≤ 𝑏 + 𝑣, then 𝑇∗ 

maps 𝑤○ into 𝑣○. 

 

While some concepts from duality and operator 

theory of locally convex vector spaces may be 

readily transferred to the more general context of 

locally convex cones, others require a new 

approach and offer insights into a far more 

elaborate structure. The concept of completeness, 

for example, does not lend itself to a 

straightforward transcription. It is adapted to 

locally convex cones in [12] in order to allow a 

reformulation of the uniform boundedness 

principle for Fréchet spaces. The approach uses 

the notions of internally bounded subsets, weakly 

cone complete and barreled cones. These 

definitions turn out to be rather technical and we 

refrain from supplying the details. We cite the 

main result, which generalizes the classical 

uniform boundedness theorem: 

 

7.1 Uniform Boundedness Theorem.  Let (𝑃, 𝑉) 

and (𝑄, 𝑊) be locally convex cones, and let 𝑇̂ be 

a family of u-continuous linear operators from 𝑃 

to 𝑄. Suppose that for every 𝑏 ∈ 𝑃 and 𝑤 ∈ 𝑊 

there is 𝑣 ∈ 𝑉 such that for every 𝑎 ∈ 𝑣(𝑏) ∩
(𝑏)𝑣 there is  > 0 such that 

 

𝑇(𝑎) ≤ 𝑇(𝑏) + 𝑤    for all  𝑇 ∈ 𝑇̂ 

 

If (𝑃, 𝑉) is barreled and (𝑄, 𝑊) has the strict 

separation property [that is, (𝑄, 𝑊) satisfies 

Theorem 4.6)], then for every internally bounded 

set ℬ  𝑃, every 𝑏 ∈ ℬ and 𝑤 ∈ 𝑊 there is 𝑣 ∈ 𝑉 

and  > 0 such that 

 

𝑇(𝑎) ≤ 𝑇(𝑏) + 𝑤    for all  𝑇 ∈ 𝑇̂ 

 

and all 𝑎 ∈ 𝑣(𝑏′) ∩ (𝑏′′)𝑣 for some 𝑏′, 𝑏′′ ∈ ℬ. 

 

8. Duality of cones and inner products 

We excerpt and augment the following from 

Ch.II.3 in [7]: A dual pair (𝑃, 𝑄) consists of two 

ordered cones 𝑃 and 𝑄 together with a bilinear 

map, i.e. a mapping 

 

(𝑎, 𝑏) → 〈𝑎, 𝑏〉 ∶ 𝑃 × 𝑄 → ℝ̅ 
 

which is linear in both variables and compatible 

with the order structures on both cones, satisfying 

 

〈𝑎, 𝑦〉 + 〈𝑏, 𝑥〉 ≤ 〈𝑎, 𝑥〉 + 〈𝑏, 𝑦〉    whenever    

𝑎 ≤ 𝑏  and  𝑥 ≤ 𝑦. 

 

Let us denote by 

 

𝑃+ = {𝑎 ∈ 𝑃| 0 ≤ 𝑎}    and 

𝑄+ = {𝑎 ∈ 𝑄| 0 ≤ 𝑎} 

 

the respective subcones of positive elements in 𝑃 

and 𝑄. The above condition guarantees that all 

elements 𝑥 ∈ 𝑄+, via 𝑎 → 〈𝑎, 𝑥〉 define monotone 

linear functionals on 𝑃, and vice versa. 
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If we endow the dual cone 𝑃∗ of a locally convex 

cone (𝑃, 𝑉) with the canonical order 

 

𝜇 ≤     if     = 𝜇 + 𝜎  for some  𝜎 ∈ 𝑃∗, 

 

then all elements 𝜇 ∈ 𝑃∗ are positive. With the 

evaluation as its canonical bilinear form, (𝑃, 𝑃∗) 

forms a dual pair. 

 

Dual pairs give rise to polar topologies in the 

following way: A subset 𝑋 of 𝑄+ is said to be 𝜎-

bounded below if 

 

inf{〈𝑎, 𝑥〉|  𝑥 ∈ 𝑋} > −∞ 
 

for all 𝑎 ∈ 𝑃. Every such subset  𝑋  𝑄+ defines 

a uniform neighborhood 𝑣𝑋 ∈ 𝑃2 by 

 

𝑣𝑋 = {(𝑎, 𝑏) ∈ 𝑃2| 〈𝑎, 𝑥〉 ≤ 〈𝑏, 𝑥〉 + 1  
for all 𝑥 ∈ 𝑋} 

 

and any collection  of 𝜎-bounded below subsets 

of 𝑄 satisfying: 

 

(P1) 𝑋 ∈  whenever 𝑋 ∈  and  > 0. 

(P2) For all 𝑋, 𝑌 ∈  there is some 𝑍 ∈  such 

that 𝑋 ∪ 𝑌  𝑍. 

 

defines a convex quasiuniform structure on 𝑃. If 

we denote the corresponding neighborhood 

system by  𝑉 = {𝑣𝑋| 𝑋 ∈ }, then (𝑃, 𝑉) 

becomes a locally convex cone. The polar 𝑣𝑋
○ of 

the neighborhood 𝑣𝑋 ∈ 𝑉 consists of all linear 

functionals 𝜇 on 𝑃 such that for 𝑎, 𝑏 ∈ 𝑃 

 

〈𝑎, 𝑥〉 ≤ 〈𝑏, 𝑥〉 + 1    for all  𝑥 ∈ 𝑋    implies that 

𝜇(𝑎) ≤ 𝜇(𝑏) + 1. 

 

All elements of 𝑋  𝑄, considered as linear 

functionals on 𝑃, are therefore contained in 𝑣𝑋
○. 

 

8.1 Examples.  (a) Let  be the family of all finite 

subsets of 𝑄+. The resulting polar topology on 𝑃 

is called the weak*-topology 𝜎(𝑃, 𝑄). 

 

(b) Let (𝑃, 𝑉) be a locally convex cone with the 

strict separation property (SP). Consider the dual 

pair (𝑃, 𝑃∗) and the collection  of the polars 

𝑣○  𝑃∗ of all neighborhoods 𝑣 ∈ 𝑉. The resulting 

polar topology on 𝑃 coincides with the original 

one. This shows in particular that every locally 

convex cone topology satisfying (SP) may be 

considered as a polar topology. 

 

Two specific topologies on 𝑄, denoted 𝑤(𝑄, 𝑃) 

and 𝑠(𝑄, 𝑃), are of particular interest: Both are 

topologies of pointwise convergence for the 

elements of 𝑃 considered as functions on 𝑄 with 

values in ℝ̅. For 𝑤(𝑄, 𝑃), ℝ̅ is considered with its 

usual (one-point compactification) topology, 

whereas +∞ is treated as an isolated point for 

𝑠(𝑄, 𝑃). A typical neighborhood for 𝑥 ∈ 𝑄, 

defined via a finite subset 𝐴 = {𝑎1, … , 𝑎𝑛} of 𝑃, is 

given in the topology 𝑤(𝑄, 𝑃) by 

 

𝑊𝐴(𝑥)

= {𝑦 ∈ 𝑄|
|〈𝑎𝑖, 𝑦〉 − 〈𝑎𝑖, 𝑥〉| ≤ 1, if 〈𝑎𝑖, 𝑥〉 < +∞

〈𝑎𝑖, 𝑦〉 > 1, if 〈𝑎𝑖, 𝑥〉 = +∞
} 

 

and in the topology 𝑠(𝑄, 𝑃) by 

 

𝑆𝐴(𝑥)

= {𝑦 ∈ 𝑄|
|〈𝑎𝑖, 𝑦〉 − 〈𝑎𝑖, 𝑥〉| ≤ 1, if 〈𝑎𝑖, 𝑥〉 < +∞

〈𝑎𝑖, 𝑦〉 = +∞, if 〈𝑎𝑖, 𝑥〉 = +∞
} 

 

In general, 𝑠(𝑄, 𝑃) is therefore finer than 𝑤(𝑄, 𝑃), 

but both topologies coincide if the bilinear form 

on 𝑃 × 𝑄 attains only finite values. 

 

In analogy to the Alaoglu-Bourbaki theorem in 

locally convex vector spaces (see [18], III.4), we 

obtain (Proposition 2.4 in [7]): 

 

8.2 Theorem.  Let (𝑃, 𝑉) be a locally convex 

cone. The polar 𝑣○ of any neighborhood 𝑣 ∈ 𝑉 is 

a compact convex subset of 𝑃∗ with respect to the 

topology 𝑤(𝑃∗, 𝑃). 

 

Likewise, a Mackey-Arens type result is available 

for locally convex cones (Theorem 3.8 in [7]): 

 

8.3 Theorem.  Let (𝑃, 𝑄) be a dual pair of ordered 

cones, and let 𝑋  𝑄 be the union of finitely many 

𝑠(𝑄, 𝑃)-compact convex subsets of 𝑄+. Then for 

every linear functional 𝜇 ∈ 𝑣𝑋
○ on 𝑃 there is an 

element 𝑥 ∈ 𝑄 such that 
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𝜇(𝑎) = 〈𝑎, 𝑥〉    for all  𝑎 ∈ 𝑃    with 

𝜇(𝑎) < +∞. 

 

The last theorem applies is particular to the 

weak*-topology 𝜎(𝑃, 𝑄) which is generated by 

the finite subsets of 𝑄. 

 

An inner product on an ordered cone 𝑃 may be 

defined as a bilinear form on 𝑃 × 𝑃 which is 

commutative and satisfies 

 

2〈𝑎, 𝑏〉 ≤ 〈𝑎, 𝑎〉 + 〈𝑏, 𝑏〉    for all  𝑎, 𝑏 ∈ 𝑃 

 

Investigations on inner products yield Cauchy-

Schwarz and Bessel-type inequalities, concepts 

for orthogonality and best approximation, as well 

as an analogy for the Riesz representation theorem 

for continuous linear functionals. For details we 

refer to [14]. 

 

9. Extended algebraic operations 

Example 2.1 (b) suggests that the scalar 

multiplication in a cone might be canonically 

extended for all scalars in ℝ or ℂ, but only a 

weakened version of the distributive law holds for 

non-positive scalars. For details of the following 

we refer to [11]. Let 𝕂 denote either the field of 

the real or the complex numbers, and 

 

 = {𝛿 ∈ 𝕂| |𝛿| ≤ 1}, 

resp.     = {𝛾 ∈ 𝕂| |𝛾| = 1} 

 

the closed unit disc, resp. unit sphere in 𝕂. 

 

An ordered cone 𝑃 is linear over 𝕂 if the scalar 

multiplication is extended to all scalars in 𝕂 and 

in addition to the requirements for an ordered cone 

satisfies 

 

𝛼(𝛽𝑎) = (𝛼𝛽)𝑎 for all 𝑎 ∈ 𝑃 and 

𝛼, 𝛽 ∈ 𝕂 

𝛼(𝑎 + 𝑏) = 𝛼𝑎 + 𝛼𝑏 for all 𝑎, 𝑏 ∈ 𝑃 and 

𝛼 ∈ 𝕂 
(𝛼 + 𝛽)𝑎 = 𝛼𝑎 + 𝛽𝑎 for all 𝑎 ∈ 𝑃 and 

𝛼, 𝛽 ∈ 𝕂 
 

It is necessary in this context to distinguish 

carefully between the additive inverse – 𝑎 of an 

element 𝑎 ∈ 𝑃 which may exist in 𝑃, and the 

element (−1)𝑎 ∈ 𝑃. Both need not coincide. 

 

We define the modular order ≼𝑚 for elements 

𝑎, 𝑏 ∈ 𝑃 by 

 

𝑎 ≼𝑚 𝑏    if    𝛾𝑎 ≤ 𝛾𝑏  for all  𝛾 ∈  

 

The basic properties of an order relation are easily 

checked. Likewise the relation ≼𝑚 is seen to be 

compatible with the extended algebraic operations 

in 𝑃, i.e. 

 

𝑎 ≼𝑚 𝑏    implies    𝑎 ≼𝑚 𝑏  

and    𝑎 + 𝑐 ≼𝑚 𝑏 + 𝑐     

 

for all  ∈ 𝕂 and 𝑐 ∈ 𝑃. Obviously 

 

𝑎 ≼𝑚 𝑏    implies that    𝑎 ≤ 𝑏. 

 

Indeed, our version of the distributive law entails 

that 

(𝛼 + 𝛽)𝑎 ≼𝑚 𝛼𝑎 + 𝛽𝑎  

holds for all  𝑎 ∈ 𝑃  and  𝛼, 𝛽 ∈ 𝕂. 

 

Using the modular order we define an equivalence 

relation ~𝑚 on 𝑃 by 

 

𝑎~𝑚𝑏    if    𝑎 ≼𝑚 𝑏  and  𝑏 ≼𝑚 𝑎 

 

An element 𝑎 ∈ 𝑃 is called 𝑚̃-invertible if there is 

𝑏 ∈ 𝑃 such that 𝑎 + 𝑏~𝑚0. Any two 𝑚̃-inverses 

of the same element 𝑎 are equivalent in the above 

sense. We summarize a few observations (Lemma 

2.1 in [11]): 

 

9.1 Lemma.  Let 𝑃 be an ordered cone that is 

linear over 𝕂. Then 

 

(a)   𝛼0 = 0 for all 𝛼 ∈ 𝕂. 

(b)   0 ≼𝑚 𝑎 + (−1)𝑎 for all 𝑎 ∈ 𝑃. 

(c)    If 𝑎 ∈ 𝑃 is 𝑚̃-invertible, then  

       (𝛼 + 𝛽)𝑎~𝑚𝛼𝑎 + 𝛽𝑎 holds for all 𝛼, 𝛽 ∈ 𝕂,  

        and (−1)𝑎~𝑚𝑏 for all 𝑚̃-inverses 𝑏 of 𝑎. 

(d)    If both 𝑎, 𝑏 ∈ 𝑃 are 𝑚̃-invertible, then  

         𝑎 ≼𝑚 𝑏 implies 𝑎~𝑚𝑏. 
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If (𝑃, 𝑉) is a locally convex cone and 𝑃 is linear 

over 𝕂, then the neighborhoods 𝑣 ∈ 𝑉 and the 

modular order on 𝑃 give rise to corresponding 

modular neighborhoods 𝑣𝑚 ∈ 𝑉𝑚 in the following 

way: For 𝑎, 𝑏 ∈ 𝑃 and 𝑣 ∈ 𝑉 we define 

 

𝑎 ≼𝑚 𝑏 + 𝑣𝑚 
 

if 𝛾𝑎 ≼𝑚 𝛾𝑏 + 𝑣 for all 𝛾 ∈ . Clearly 𝑎 ≼𝑚 𝑏 +
𝑣𝑚 implies that 𝑎 ≼𝑚 𝑏 + ||𝑣𝑚 for all  ∈ 𝕂. 

We denote the system of modular neighborhoods 

on 𝑃 by 𝑉𝑚. If we require that every element 𝑎 ∈
𝑃 is also bounded below with respect to these 

modular neighborhoods, i.e. if for every 𝑣 ∈ 𝑉 

there is  > 0 such that 

 

0 ≤ 𝛾𝑎 + 𝑣    for all  𝛾 ∈ , 

 

then (𝑃, 𝑉𝑚) with the modular order is again a 

locally convex cone. In this case we shall say that 

(𝑃, 𝑉) is a locally convex cone over 𝕂. The 

respective (upper, lower and symmetric) modular 

topologies on 𝑃 are finer than those resulting from 

the original neighborhoods in 𝑉. 

 

9.2 Examples.  (a) Let 𝑃 = 𝕂̅ = 𝕂 ∪ {∞} be 

endowed with the usual algebraic operations, in 

particular 𝑎 + ∞ = ∞ for all 𝑎 ∈ 𝕂̅, 𝛼 ∙ ∞ = ∞ 

for all 0 ≠ 𝛼 ∈ 𝕂 and 0 ∙ ∞ = 0. The order on 𝕂̅ 

is defined by 

 

𝑎 ≤ 𝑏    if  𝑏 = ∞  or  ℜ(𝑎) ≤ ℜ(𝑏). 

 

With the neighborhood system 𝑉 = {𝜀 > 0},  𝕂̅  is 

a full locally convex cone. It is easily checked that 

𝕂̅ is linear over 𝕂. The modular order on 𝕂̅ is 

identified as 𝑎 ≼𝑚 𝑏 if either 𝑏 = ∞ or 𝑎 = 𝑏. For 

𝑣 = 𝜀 ∈ 𝑉 we have 𝑎 ≼𝑚 𝑏 + 𝑣𝑚 if either 𝑏 = ∞ 

or |𝑎 − 𝑏| ≤ 𝜀. 

 

(b) We augment our Example 3.1 (c) as follows: 

Let (𝐸, ≤) be a locally convex ordered topological 

vector space over 𝕂. For 𝐴 ∈ 𝑃 = 𝐶𝑜𝑛𝑣(𝐸) we 

define the multiplication by any scalar 𝛼 ∈ 𝕂 by 

 

𝛼𝐴 = {𝛼𝑎| 𝑎 ∈ 𝐴} 
 

for 𝛼 ∈ 𝕂 and 𝐴 ∈ 𝑃, and the addition and order 

as in 3.1 (c), that is 

 

𝐴 ≤ 𝐵    if    𝐴  ↓ 𝐵 

Thus 𝑃 is linear over 𝕂. Considering the modular 

order on 𝑃, for 𝐴 ∈ 𝑃 we denote by 

 

↓𝑚 𝐴 = ⋂(𝛾̅ ↓ (𝛾𝐴))

𝛾∈

 

 

(for 𝕂 = ℝ this is just the order interval generated 

by 𝐴). Thus 

 

𝐴 ≼𝑚 𝐵    if    𝐴  ↓𝑚 𝐵 

 

As in 3.1 (c), the abstract neighborhood system in 

𝑃 is given by a basis 𝑉  𝑃 of closed absolutely 

convex neighborhoods of the origin in 𝐸. Every 

element 𝐴 ∈ 𝑃 is seen to be m-bounded below, 

thus fulfilling the last requirement for a locally 

convex cone over 𝕂. 

 

The case 𝐸 = 𝕂 with the order from 9.2 (a), i.e. 

𝑎 ≤ 𝑏 if ℜ(𝑎) ≤ ℜ(𝑏), is of particular interest for 

the investigation of linear functionals: For 𝐴, 𝐵 ∈
𝐶𝑜𝑛𝑣(𝕂) we have 𝐴 ≤ 𝐵 if sup{ℜ(𝑎)|  𝑎 ∈ 𝐴} ≤
sup{ℜ(𝑏)|  𝑏 ∈ 𝐵} and 𝐴 ≼𝑚 𝐵 if 𝐴  𝐵. For 𝜀 >
0 the neighborhood 𝜀 ∈ 𝑉 is determined by 

 

𝐴 ≤ 𝐵  𝜀 

if sup{ℜ(𝑎)|  𝑎 ∈ 𝐴} ≤ sup{ℜ(𝑏)|  𝑏 ∈ 𝐵} + 𝜀, 

 

and 

𝐴 ≼𝑚 𝐵  𝜀𝑚    if    𝐴  𝐵  𝜀 

 

(c) Let 𝑃 consist of all ℝ̅-valued functions 𝑓 on 

[−1, +1] that are uniformly bounded below and 

satisfy 0 ≤ 𝑓(𝑥) + 𝑓(−𝑥) for all 𝑥 ∈ [−1, +1]. 
Endowed with the pointwise addition and 

multiplication by non-negative scalars, the order 

𝑓 ≤ 𝑔 if 𝑓(𝑥) ≤ 𝑔(𝑥) for all 0 ≤ 𝑥 ≤ 1, and the 

neighborhood system 𝑉 consisting of the (strictly) 

positive constants, 𝑃 is a full locally convex cone. 

We may extend the scalar multiplication to 

negative reals 𝛼 and 𝑓 ∈ 𝑃 by 

 

(𝛼𝑓)(𝑥) = (−𝛼)𝑓(−𝑥) 
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for all 𝑥 ∈ [−1, +1]. Thus 𝑃 is seen to be linear 

over ℝ. The modular order on 𝑃 is the pointwise 

order on the whole interval [−1, +1]. 
 

For a locally convex cone over 𝕂 we shall denote 

by ℬ𝑚 the subcone of all m-bounded elements, i.e. 

those elements 𝑎 ∈ 𝑃 such that for every 𝑣 ∈ 𝑉 

there is  > 0 such that 𝑎 ≼𝑚 𝑣𝑚. Clearly 

 ℬ𝑚 . ℬ. We cite Theorem 2.3 from [11]: 

 

9.3 Theorem.  Every locally convex cone (𝑃, 𝑉) 

can be embedded into a locally convex cone (𝑃̃, 𝑉) 

over 𝕂. The embedding is linear, one-to-one and 

preserves the global preorder and the 

neighborhoods of 𝑃. All bounded elements 𝑎 ∈ 𝑃 

are mapped onto m-bounded elements of 𝑃̃ and 

are 𝑚̃-invertible in 𝑃̃. 

 

Let (𝑃, 𝑉) be a locally convex cone over 𝕂. 

Endowed with the corresponding modular 

neighborhood system, (𝑃, 𝑉𝑚) is again a locally 

convex cone. We denote the dual cone of (𝑃, 𝑉𝑚)  

by 𝑃𝑚
∗  and refer to it as the modular dual of 𝑃. As 

continuity with respect to the given topology 

implies continuity with respect to the modular 

topology we have 𝑃∗  𝑃𝑚
∗ . By 𝑣𝑚

○  we denote the 

(modular) polar of the neighborhood 𝑣𝑚 ∈ 𝑉𝑚, i.e. 

the set of all linear functionals 𝜇 ∈ 𝑃𝑚
∗  such that 

 

𝜇(𝑎) ≤ 𝜇(𝑏) + 1  holds whenever  𝑎 ≼𝑚 𝑏 + 𝑣𝑚 

 

Monotone linear functionals in 𝜇 ∶ 𝑃 → ℝ̅ are 

required to be homogeneous only with respect to 

the multiplication by positive reals. For negative 

reals 𝛼 < 0 the relation 𝛼𝑎 + (−𝛼)𝑎 ≥ 0 yields 

𝜇(𝛼𝑎) ≥ 𝛼𝜇(𝑎). But for complex numbers 𝛼 in 

general we fail to recognize any obvious relation 

between 𝜇(𝛼𝑎) and 𝛼𝜇(𝑎). This may be remedied, 

at least for a large class of functionals in 𝑃𝑚
∗ , by 

the following procedure: An element 𝑎 ∈ 𝑃 is 

called m-continuous if the mapping 

 

𝛾 → 𝛾𝑎 ∶  → 𝑃 
 

is uniformly continuous with respect to the upper 

topology on 𝑃, i.e. if for every 𝑣 ∈ 𝑉 there is 𝜀 >
0 such that 𝛾𝑎 ≤ 𝛾′𝑎 + 𝑣 holds for all 𝛾, 𝛾′ ∈  

satisfying |𝛾 − 𝛾′| ≤ 𝜀. For 𝕂 = ℝ this condition 

is obviously void. For 𝕂 = ℂ, however, the m-

continuous elements form a subcone of 𝑃 which 

we shall denote by 𝐶𝑚. Obviously ℬ𝑚  𝐶𝑚. A 

functional 𝜇 ∈ 𝑃𝑚
∗  is called regular if 

 

𝜇(𝑎) = sup{𝜇(𝑐)|  𝑐 ∈ 𝐶𝑚, 𝑐 ≼𝑚 𝑎} 

 

holds for all 𝑎 ∈ 𝑃. For 𝕂 = ℝ, of course, as all 

elements 𝑎 ∈ 𝑃 are m-continuous, every 𝜇 ∈ 𝑃𝑚
∗  is 

regular. For a regular linear functional 𝜇 ∈ 𝑃𝑚
∗  and 

every 𝑎 ∈ 𝑃 we may define a corresponding set-

valued function 𝜇𝑐 ∶ 𝑃 → 𝐶𝑜𝑛𝑣(𝕂) by 

 

𝜇𝑐(𝑎) = {𝑎 ∈ 𝕂| ℜ(𝛾𝛼) ≤ 𝜇(𝛾𝛼)   
for all  𝛾 ∈ 𝕂} 

 

The regularity of 𝜇 entails (see [11]) that 𝜇𝑐(𝑎) is 

non-empty, closed and convex in 𝕂, and that 

 

𝜇(𝛾𝛼) = sup{ℜ(𝛾𝛼)| 𝛼 ∈ 𝜇𝑐(𝑎)} 
 

holds for all 𝛾 ∈ 𝕂. The latter shows in particular 

that the correspondence between 𝜇 and 𝜇𝑐 is one-

to-one. For 𝕂 = ℝ the values of 𝜇𝑐 are closed 

intervals in ℝ; more precisely: 

 

𝜇𝑐(𝑎) = [−𝜇((−1)𝑎), 𝜇(𝑎)] ∩ ℝ. 

 

The mapping 𝜇𝑐 ∶ 𝑃 → 𝐶𝑜𝑛𝑣(𝕂) is additive and 

homogeneous with respect to the multiplication 

by all scalars in 𝕂. More precisely: 

 

9.4 Lemma. Let 𝜇 ∶ 𝑃 → ℝ̅ be a regular 

monotone linear functional. For  𝜇𝑐 ∶ 𝑃 →
𝐶𝑜𝑛𝑣(𝕂) the following hold:  

 

(a)  𝜇𝑐(𝑎) is a non-empty closed convex subset 

      of 𝕂. 

(b)  𝜇𝑐(𝑎 + 𝑏) = 𝜇𝑐(𝑎)  𝜇𝑐(𝑏) for all 𝑎, 𝑏 ∈ 𝑃. 

(c)  𝜇𝑐(𝛼𝑎) = 𝛼𝜇𝑐(𝑎) for all 𝑎 ∈ 𝑃 and 𝛼 ∈ 𝕂. 

(d)  If 𝑎 ∈ 𝑃 is 𝑚̃-invertible then 𝜇𝑐(𝑎) is a 

      singleton subset of 𝕂. 

(e)  𝜇𝑐 is continuous with respect to the modular  

      topologies on 𝑃 and 𝐶𝑜𝑛𝑣(𝕂); more  

      precisely: if 𝜇 ∈ 𝑣𝑚
○  then, for 𝑎, 𝑏 ∈ 𝑃, 

 

𝑎 ≼𝑚 𝑏 + 𝑣𝑚    implies that    

𝜇𝑐(𝑎)  𝜇𝑐(𝑏)  , 
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where  denotes the closed unit disc in ℂ. 

 

9.5 Examples.  Reviewing our Example 9.2 (b), 

i.e. the locally convex cone 𝑃 = 𝐶𝑜𝑛𝑣(𝐸) over 𝕂, 

where (𝐸, ≤) denotes a locally convex ordered 

topological vector space, we realize that for every 

𝕂-valued continuous linear functional 𝑓 on 𝐸, the 

mapping 𝜇: 𝑃 → ℝ̅ such that 

 

𝜇(𝐴) = sup{ℜ(𝑓(𝑎))|  𝑎 ∈ 𝐴} 

 

is linear, an element of 𝑃𝑚
∗  and obviously regular. 

The corresponding set-valued functional 𝜇𝑐 ∶ 𝑃 →
𝐶𝑜𝑛𝑣(𝕂) is given by 

 

𝜇𝑐(𝐴) = 𝑓(𝐴) = {𝑓(𝑎)| 𝑎 ∈ 𝐴}. 

 

However, in the complex case, even for 𝐸 = ℂ, 

one can find examples of non-regular linear 

functionals in 𝑃𝑚
∗ . 

 

However, in the complex case, even for 𝐸 = ℂ, 

one can find examples of non-regular linear 

functionals in 𝑃𝑚
∗ . 

 

It is possible to construct a decomposition for 

regular functionals 𝜇 ∈ 𝑃𝑚
∗  into functionals in 𝑃∗. 

In a locally convex ordered topological vector 

space over ℝ every continuous linear functional 

may be expressed as a difference of two positive 

ones (see [18], IV.3.2). A similar decomposition 

is available in the complex case. The more general 

setting of locally convex cones, however, requires 

the use of Riemann-Stieltjes type integrals instead 

of sums. In this instance we refrain from supplying 

the detailed arguments and notations for this rather 

technical procedure. They may be found in [11]. 

The main result is: 

 

9.6 Theorem.  Let (𝑃, 𝑉) be a locally convex cone 

over 𝕂. For every regular linear functional 𝜇 ∈
𝑃𝑚

∗  there exists a 𝑃∗-valued m-integrating family 

(𝜗𝐸)𝐸∈ℝ on the unit circle  in ℂ such that 

 

𝜇 = ∫ 𝛾 𝑑𝜗


 

 

In the case of a locally convex cone over ℝ, where 

 = {−1, +1}, this result simplifies considerably. 

Every linear functional 𝜇 ∈ 𝑃𝑚
∗  is regular then, and 

the integral representation in Theorem 7.6 reduces 

to a sum of two functionals. 

 

9.7 Corollary.  Let (𝑃, 𝑉) be a locally convex 

cone over ℝ. For every linear functional 𝜇 ∈ 𝑃𝑚
∗  

there exist 𝜇1, 𝜇2 ∈ 𝑃∗ such that 

 

𝜇(𝑎) = 𝜇1(𝑎) + 𝜇2((−1)𝑎)  for all 𝑎 ∈ 𝑃. 

 

10. Application: Korovkin type approximation 

Locally convex cones provide a suitable setting 

for a rather general approach to Korovkin type 

theorems, an extensively studied field in abstract 

approximation theory. For a detailed survey on 

this subject we refer to [2]. Approximation 

schemes may often be modeled by sequences (or 

nets) of linear operators. For a sequence (𝑇𝑛)𝑛∈ℕ 

of positive linear operators on 𝐶([0,1]), 

Korovkin's theorem (see [8]) states that 𝑇𝑛(𝑓) 

converges uniformly to 𝑓 for every 𝑓 ∈ 𝐶([0,1]), 

whenever 𝑇𝑛(𝑔) converges to 𝑔 for the three test 

functions 𝑔 = 1, 𝑥, 𝑥2. This result was 

subsequently generalized for different sets of test 

functions 𝑔 and different topological spaces 𝑋 

replacing the interval [0,1]. Classical examples 

include the Bernstein operators and the Fejér sums 

which provide approximation schemes by 

polynomials and trigonometric polynomials, 

respectively. Further generalizations investigate 

the convergence of certain classes of linear 

operators on various domains, such as positive 

operators on topological vector lattices, 

contractive operators on normed spaces, 

multiplicative operators on Banach algebras, 

monotone operators on set-valued functions, 

monotone operators with certain restricting 

properties on spaces of stochastic processes, etc. 

Typically, for a subset 𝑀 of a domain 𝐿 one tries 

to identify all elements 𝑓 ∈ 𝐿 such that 

 

𝑇𝛼(𝑔) → 𝑔  for all  𝑔 ∈ 𝑀    implies that    

𝑇𝛼(𝑓) → 𝑓,   

 

whenever (𝑇𝛼)𝛼∈𝐴 is an equicontinuous net 

(generalized sequence) in the restricted class of 
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operators on 𝐿. Locally convex cones allow a 

unified approach to most of the above mentioned 

cases. Various restrictions on classes of operators 

may be taken care of by the proper choice of 

domains and their topologies alone and 

approximation results may be obtained through 

the investigation of continuous linear operators 

between locally convex cones. We proceed to 

outline a few results that may be found in Chapters 

III and IV of [7]: 

 

Let 𝑄 be a subcone of the locally convex cone 

(𝑃, 𝑉). The element 𝑎 ∈ 𝑃 is said to be 𝑄-

superharmonic in 𝜇 ∈ 𝑃∗ if  𝜇(𝑎) is finite and if 

for all  ∈ 𝑃∗, 

 

(𝑏) ≤ 𝜇(𝑏)  for all  𝑏 ∈ 𝑄    implies that    

(𝑎) ≤ 𝜇(𝑎) 
 

This notation is derived from potential theory. We 

cite Theorem III.1.3 from [7] which is an 

immediate corollary to our Range Theorem 4.5 

with the following insertions: We choose 𝑞(𝑎) =
−∞ for all 𝑎 ≠ 0 and 𝑝(𝑎) = 𝜇(𝑎) for 𝑎 ∈ 𝑄, 

otherwise 𝑝(𝑎) = +∞, and obtain: 

 

10.1 Sup-Inf-Theorem.  Let 𝑄 be a subcone of the 

locally convex cone (𝑃, 𝑉). Let 𝑎 ∈ 𝑃 and 𝜇 ∈ 𝑃∗ 

such that 𝜇(𝑎) is finite. Then 𝑎 is 𝑄-

superharmonic in 𝜇 if and only if  

 

𝜇(𝑎) = sup𝑣∈𝑉 inf{𝜇(𝑏)|  𝑏 ∈ 𝑄, 𝑎 ≤ 𝑏 + 𝑣}. 

 

We shall cite only a simplified version of the main 

Convergence Theorem IV.1.13 in [7] for nets of 

linear operators on a locally convex cone. It is 

however sufficient to derive the classical results 

for Korovkin type approximation processes. For a 

net (𝑎𝛼)𝛼∈𝐴 in 𝑃 we shall denote 𝑎𝛼 ↑ 𝑏 if 

(𝑎𝛼)𝛼∈𝐴 converges towards 𝑏 ∈ 𝑃 with respect to 

the upper topology, i.e. if for every 𝑣 ∈ 𝑉 there is 

𝛼0 such that 

 

𝑎𝛼 ≤ 𝑏 + 𝑣    for all  𝛼 ≥ 𝛼0. 

 

10.2 Convergence Theorem.  Let 𝑄 be a subcone 

of the locally convex cone (𝑃, 𝑉). Suppose that for 

every 𝑣 ∈ 𝑉 the element 𝑎 ∈ 𝑃 is 𝑄-

superharmonic in all functionals of the 𝑤(𝑃∗, 𝑃)-

closure of the set of extreme points of 𝑣○. Then for 

every equicontinuous net (𝑇𝛼)𝛼∈𝐴 of linear 

operators on 𝑃 

 

𝑇𝛼(𝑏) ↑ 𝑏  for all  𝑏 ∈ 𝑄    implies that     

𝑇𝛼(𝑎) ↑ 𝑎. 

 

Let us mention just one of the many well-known 

Korovkin type theorems that may be derived using 

Theorems 10.1 and 10.2: Let 𝑋 be a locally 

compact Hausdorff space, 𝑃 = 𝐶0(𝑋) the space of 

all continuous real-valued functions on 𝑋 that 

vanish at infinity, and let 𝑉 consist of all positive 

constant functions. With the pointwise order and 

algebraic operations, (𝑃, 𝑉) is a locally convex 

cone. Continuous linear operators on 𝑃 are 

monotone and bounded with respect to the norm 

of uniform convergence on 𝐶0(𝑋). The extreme 

points of polars of neighborhoods are just the non-

negative multiples of point evaluations. Finally, 

convergence 𝑓𝛼 → 𝑓 for a net of functions in 

𝐶0(𝑋) in the uniform topology means that both 

𝑓𝛼 ↑ 𝑓 and (−𝑓𝛼) ↑ (−𝑓). We obtain a result due 

to Bauer and Donner [4]: 

 

10.3 Theorem.  Let 𝑋 be a locally compact 

Hausdorff space, and let 𝑀 be a subset of 𝐶0(𝑋). 

For a function 𝑓 ∈ 𝐶0(𝑋) the following are 

equivalent: 

 

(a)  For every equicontinuous net (𝑇𝛼)𝛼∈𝐴 of  

       positive linear operators on 𝐶0(𝑋) 

 

𝑇𝛼(𝑔) → 𝑔  for all  𝑔 ∈ 𝑀    implies that    

𝑇𝛼(𝑓) → 𝑓 
 

(Convergence is meant with respect to the 

topology of uniform convergence on 𝑋.) 

 

(b)  For every 𝑥 ∈ 𝑋 

 

𝑓(𝑥) = sup𝜀>0inf {𝑔(𝑥)|
 𝑔 ∈ span(𝑀),

𝑓 ≤ 𝑔 + 𝜀
} 

   = inf𝜀>0sup {𝑔(𝑥)|
 𝑔 ∈ span(𝑀),

𝑔 ≤ 𝑓 + 𝜀
} 
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(c)  For every 𝑥 ∈ 𝑋 and for every bounded  

      positive regular Borel measure 𝜇 on 𝑋 

 

𝜇(𝑔) = 𝑔(𝑥)  for all  𝑔 ∈ 𝑀    implies that    

𝜇(𝑓) = 𝑓(𝑥) 
 

The General Convergence Theorem IV.1.13 in [7] 

allows a far wider range of applications, including 

quantitative estimates for the order of 

convergence for the approximation processes 

modeled by sequences or nets of linear operators. 

 

11. Application: Topological integration theory 

A rather general approach to topological 

integration theory using locally convex cones is 

established in [10]. It utilizes techniques originally 

developed for Choquet theory. Continuous linear 

functionals on a given locally convex cone 𝑃 are 

called integrals if they are minimal, resp. maximal 

with respect to certain subcones of 𝑃. Their 

properties resemble those of Radon measures on 

locally compact spaces. They satisfy convergence 

theorems corresponding to Fatou's Lemma and 

Lebesgue's theorem about bounded convergence. 

Depending on the choice of the determining 

subcones of 𝑃, one obtains a wide variety of 

applications, including classical integration theory 

on locally compact spaces (see [5]), Choquet 

theory about integral representation (see [1]), H-

integrals on H-cones in abstract potential theory 

and monotone functionals on cones of convex 

sets. We shall outline some of the main concepts 

without supplying details and proofs which may 

be found in [10]: 

 

Let (𝑃, 𝑉) be a full locally convex cone, 𝐿 and 𝑈 

two subcones of 𝑃. 𝐿 is supposed to be a full cone, 

whereas all elements of 𝑈 are supposed to be 

bounded. The following two conditions hold: 

 

(U)   For all 𝑎 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑢 ∈ 𝑈 such that  

        𝑢 ≤ 𝑎 + 𝑙 and for every 𝑣 ∈ 𝑉 there is 

        𝑢′ ∈ 𝑈 such that 𝑢′ ≤ 𝑎 + 𝑣 and 

        𝑢 ≤ 𝑢′ + 𝑙 + 𝑣. 

 

(L)   For all 𝑎 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑢 ∈ 𝑈 such that 

        𝑎 + 𝑢 ≤ 𝑙 and for every 𝑣 ∈ 𝑉 there is 

        𝑙′ ∈ 𝐿 such that 𝑎 ≤ 𝑙′ and 𝑙′ + 𝑢 ≤ 𝑙 + 𝑣. 

For linear functionals 𝜇,  ∈ 𝑃∗ we set 

 

𝜇 ≼     if    𝜇(𝑙) ≤ (𝑙)  for all  𝑙 ∈ 𝐿    and    

𝜇(𝑢) ≥ (𝑢)  for all  𝑢 ∈ 𝑈. 

 

We write 𝜇~  if both 𝜇 ≼  and  ≼ 𝜇, i.e. if the 

functionals 𝜇 and  coincide on 𝑈 and 𝐿. Integrals 

on 𝑃 are the minimal functionals in this order and 

(𝑃, 𝐿, 𝑈) is called an integration cone. 

 

11.1 Theorem.  Let (𝑃, 𝐿, 𝑈) be an integration 

cone. 

(a) For every continuous linear functional 

      𝜇0 ∈ 𝑃∗ there is an integral 𝜇 on 𝑃 such that 

 

𝜇(𝑙) ≤ 𝜇0(𝑙)  for all  𝑙 ∈ 𝐿    and    𝜇(𝑢) ≥
𝜇0(𝑢)  for all  𝑢 ∈ 𝑈. 

 

(b) The linear functional 𝜇 ∈ 𝑃∗ is an integral if  

      and only if 

 

𝜇(𝑙) = inf𝑣∈𝑉 sup{𝜇(𝑢)|  𝑢 ≤ 𝑙 + 𝑣, 𝑢 ∈ 𝑈}  

for all  𝑙 ∈ 𝐿, 

and 

 

𝜇(𝑢) = inf{𝜇(𝑙)|  𝑢 ≤ 𝑙, 𝑙 ∈ 𝐿} for all  𝑢 ∈ 𝑈. 

 

An element 𝑎 ∈ 𝑃 is said to be 𝜇-integrable with 

respect to an integral 𝜇 if 

 

~𝜇     implies that    (𝑎) = 𝜇(𝑎) 

 

for all ∈ 𝑃∗. For a given integral 𝜇 on 𝑃 the 𝜇-

integrable elements form a subcone of 𝑃 that 

contains both 𝐿 and 𝑈. 

 

11.2 Theorem.  Let 𝜇 be an integral on 𝑃. The 

element 𝑎 ∈ 𝑃 is 𝜇-integrable if and only if 

 

inf𝑣∈𝑉 sup{𝜇(𝑢)|  𝑢 ≤ 𝑎 + 𝑣, 𝑢 ∈ 𝑈} =
inf {𝜇(𝑙)| 𝑎 ≤ 𝑙, 𝑙 ∈ 𝐿}. 

 

For a Lebesgue-type convergence theorem we 

require a subset of special integrals that 

correspond to the point evaluations in classical 

integration theory. In this vein, for a neighborhood 

𝑣 ∈ 𝑉 we define the integral boundary relative to 

𝑣 to be the set 𝑣 of all integrals 𝛿 on 𝑃 such that 
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𝛿(𝑣) < +∞, satisfying the following property: If 

for any two integrals 𝜇1, 𝜇2 on 𝑃 we have 

 

𝛿(𝑣) = (𝜇1 + 𝜇2)(𝑣)    and 

𝛿(𝑢) ≤ (𝜇1 + 𝜇2)(𝑢)  for all  𝑢 ∈ 𝑈 

 

then there are 1,2 ≥ 0 such that 𝜇1~1𝛿 and 

𝜇2~2𝛿. For a neighborhood 𝑣 ∈ 𝑉 we shall say 

that a subset 𝐴 of 𝑃 is uniformly 𝑣-dominated if 

there is 𝜌 ≥ 0 such that 𝑎 ≤ 𝜌𝑣 for all 𝑎 ∈ 𝐴. 

 

We formulate the main convergence result 

(Theorem 4.3 in [11]) which is modeled after the 

Bishop de-Leeuw theorem from Choquet theory. 

 

11.3 Theorem.  Let 𝜇 be an integral on the 

integration cone (𝑃, 𝐿, 𝑈). For a neighborhood 

𝑣 ∈ 𝑉 let (𝑎𝑛)𝑛∈ℕ be a uniformly 𝑣-dominated 

sequence of 𝜇-integrable elements in 𝑃. If 

 

lim sup𝑛∈ℕ𝛿(𝑎𝑛) ≤ 𝛿(𝑣) 
 

for all 𝛿 ∈ 𝑣, then 

 

lim sup𝑛∈ℕ𝜇(𝑎𝑛) ≤ 𝜇(𝑣). 

 

For detailed arguments in the following examples 

we refer to Examples 1.1 and 3.13 in [10]. 

 

11.4 Examples.  (a) This example models 

topological integration theory on a compact 

Hausdorff space 𝑋 as presented in [5]: Let 𝑃 be 

the cone of all bounded below ℝ̅-valued functions 

on 𝑋, endowed with the pointwise algebraic 

operations and order, and let 𝑉 consist of all 

strictly positive constant functions on 𝑋. Then 

(𝑃, 𝑉) is a full locally convex cone. We choose for 

𝐿 the subcone of all ℝ̅-valued lower 

semicontinuous functions and for 𝑈 all real-

valued upper semicontinuous functions in 𝑃. As 

required, 𝑉  𝐿, and all functions in 𝑈 are 

bounded. For an integral 𝜇 ∈ 𝑃∗, condition 11.1 

(b) implies that 

 

𝜇(𝑙) = sup{𝜇(𝑐)|  𝑐 ≤ 𝑙, 𝑐 ∈ 𝐶(𝑋)}  

for all  𝑙 ∈ 𝐿 

 

and 

𝜇(𝑢) = inf{𝜇(𝑐)|  𝑢 ≤ 𝑐, 𝑐 ∈ 𝐶(𝑋)}  

for all  𝑢 ∈ 𝑈. 

 

Following Theorem 11.2, a function 𝑓 ∈ 𝑃 is 𝜇-

integrable if and only if 

 

sup{𝜇(𝑢)|  𝑢 ≤ 𝑓, 𝑢 ∈ 𝑈} 

= inf{𝜇(𝑙)|  𝑓 ≤ 𝑙, 𝑙 ∈ 𝐿}. 

 

The integrals of this theory, therefore are the 

positive Radon measures on the compact space 𝑋, 

and the above notion of integrability coincides 

with the usual one (see [5], IV.4, Théorème 3), 

except for the fact that we allow integrals to take 

the value +∞. Theorem 11.1 (a) implies that every 

positive linear functional on 𝐶(𝑋) permits an 

extension to a positive Radon measure on 𝑋, 

which is the result of the Riesz Representation 

Theorem. For a neighborhood 𝑣 ∈ 𝑉 the integral 

boundary relative to 𝑣 consists of positive 

multiples of point evaluations in 𝑋. Thus Theorem 

11.3 yields Lebesgue's convergence theorem. The 

adaptation of this example for a locally compact 

Hausdorff space 𝑋 is rather more technical and 

may be found in [10], Example 3.13 (c). 

 

(b) Let 𝑋 be a compact convex subset of a locally 

convex Hausdorff space, and let (𝑃, 𝑉) be as in 

(a). We choose the subcone of all ℝ̅-valued lower 

semicontinuous concave functions for 𝐿 and the 

real-valued upper semicontinuous convex 

functions for 𝑈. As the elements of the dual cone 

𝑃∗ of 𝑃 when restricted to 𝐶(𝑋) are positive 

Radon measures on 𝑋, our  integrals on 𝑃 are just 

the usual maximal representation measures from 

classical Choquet theory. The 𝜇-integrable 

elements of 𝑃 include all continuous functions on 

𝑋. Theorem 11.2 yields Mokobodzki's 

characterization of maximal measures in Choquet 

theory (Proposition 1.4.5 in [1]). The subspace 

𝑈 ∩ 𝐿 consists of the continuous affine functions 

on 𝑋, and Theorem 11.1 (a) implies that every 

positive linear functional on this subspace (i.e. a 

positive multiple of a point evaluation on 𝑋) may 

be represented by such a maximal measure. 

Moreover, for every neighborhood 𝑣 ∈ 𝑉, the 

integral boundary 𝑣 consists of positive 

multiples of evaluations in the extreme points of 
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𝑋, hence Theorem 11.3 recovers the Bishop de-

Leeuw theorem from classical Choquet theory 

about the support of maximal measures. 

 

(c) Let (𝑃 = 𝐶𝑜𝑛𝑣(𝐸), 𝑉) be the full locally 

convex cone introduced in Example 3.1 (c). We 

choose 𝐿 = 𝑃 and for 𝑈 the subcone of 𝑃 of all 

singleton subsets of the space 𝐸. Following 

Theorem 11.2 every integral 𝜇 on 𝑃 is already 

determined by its values on the subcone 𝑈, that is 

by a monotone continuous linear functional 𝜇0 in 

the usual dual 𝐸′ of the locally convex ordered 

topological vector space 𝐸; that is 

 

𝜇(𝐴) = sup{𝜇0(𝑎)|  𝑎 ∈ 𝐴} 
 

for every 𝐴 ∈ 𝑃. This describes a one-to-one 

correspondence between the monotone 

functionals in 𝐸′ and the integrals on 𝑃. For a 

neighborhood 𝑣 ∈ 𝑉 the integral boundary 

relative to 𝑣 consists of those integrals on 𝑃 that 

are induced by positive multiples of the extreme 

points of the usual polar of 𝑣 in 𝐸′. 
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Abstract  

Pomelo skin was investigated for its adsorption ability toward Brilliant Green dye. Experimental 

conditions used in this study were 2 h contact time; PS dosage = 0.04 g and ambient temperature. 

No adjustment of medium pH was required throughout the study and pomelo skin was able to 

maintain good adsorption capability under various ionic strengths. Of the three isotherm models 

(Langmuir, Freundlich and Sips) used to fit the experimental data, the adsorption was best 

described by the Freundlich model, indicating multi-layer adsorption onto a heterogeneous surface, 

followed by the Sips and the Langmuir models. Adsorption was exothermic in nature and kinetics 

was best described by the pseudo second order and pore diffusion was found to be not the rate 

determining step. Successful regeneration and reusability of spent pomelo skin, coupled with high 

maximum adsorption capacity (qmax) of 325 mg/g (Langmuir) and 400 mg/g (Sips) at 25 °C 

compared with many reported adsorbents, make pomelo skin a potential candidate to be considered 

in real life application of wastewater remediation. 

  

Index Terms: pomelo skin, low-cost adsorbent, adsorption isotherm, brilliant green dye 

 

1. Introduction 
Industralisation and exponential growth in the 

world’s population have resulted in severe 

environmental pollution, thereby causing global 

concern. Irresponsible dumping of wastes into the 

water systems has caused severe damage to 

aquatic organisms and plants. The past couple of 

decades have seen the emergence of various 

adsorbents for the remediation of wastewater. 

These adsorbents ranged from industrial1-3 to 

agricultural wastes,4-8 synthetic materials9 to 

natural biosorbents,10-13 as well as surface 

modified adsorbents14 and many others15, 16. 

 

Brilliant green (BG) dye, also known as malachite 

green G, belongs to the triarylmethane dyes. It is 

known to be toxic when ingested and can cause 

vomiting.17 This dye has also been reported to 

cause corneal opacification when 1% of this dye 

solution came in contact with the eye.18 

 

In this study, we report the use of pomelo skin 

(PS) as a low-cost natural adsorbent for the 

removal of BG. The skin of the fruit is inedible 

and often discarded as waste. As such, PS can be 

obtained easily and at abundance making it an 

ideal sample to be used as an adsorbent. Reports 

have shown that PS has been successfully utilised 

as an adsorbent for the removal of heavy metals 

such as Cu(II),19 Pb(II),20 Cd(II),21 as well as dyes 

such as methylene blue,22 reactive blue 114,23 and 

acid blue 15.24 PS has also been reported to clean 

up oil spill from simulated seawater.25 These 

studies along with the fact that PS is easily 

available and abundant make it a good low-cost 

adsorbent. To the best of our knowledge, the use 

of PS for the removal of BG has not been 

investigated. 

 

2. Experimental 

2.1. Sample preparation and chemicals 

Pomelo fruits were purchased from the 

supermarket and had their skin separated from the 
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flesh. The skin was dried in an oven at 70 °C until 

constant mass was obtained. The dried skin was 

then blended using normal household blender and 

sieved to obtain particle size of 355-850 µm and 

was stored in airtight plastic bag.  

 

Brilliant green dye, IUPAC name 4-([4-

(diethylamino)phenyl](phenyl)methylene)-N,N-

diethyl-2,5-cyclohexadien-1-iminium hydrogen 

sulfate (molecular formula C27H34N2O4S and Mr = 

483 g/mol), was purchased from Sigma-Aldrich. 

Sodium hydroxide (Univar) and nitric acid 

(AnalaR) were diluted and were used in adjusting 

the solution’s pH. Stock solution of potassium 

nitrate (Sigma-Aldrich) was prepared and diluted 

to different concentrations. All reagents were used 

without further purification and distilled water 

was used throughout the experiment. 

 

2.2. Experimental setup 

The experiment was done using batch experiment 

method. PS was mixed with BG solution and 

agitated using Stuart orbital shaker at 250 rpm for 

predetermined time. The filtrate was collected and 

analysed using UV–visible (UV-vis) Jenway 

6320D spectrophotometer at wavelength 624 nm. 

The adsorption capacity of PS, qe (mg/g) and the 

percentage removal are calculated as follow: 

 

𝑞𝑒(mg/g) =  
(𝐶𝑖−𝐶𝑒)𝑉

𝑚
   (1) 

 

Removal (%) = 
(𝐶𝑖−𝐶𝑒)×100 %

𝐶𝑖
  (2) 

 

where Ci is the dye concentration initially (mg/L), 

Ce is the filtrate dye concentration (mg/L), V is the 

dye volume used (L) and m is the mass of PS (g). 

 

2.2.1. Effect of contact time 

PS (0.4 g) was weighed into 13 conical flasks and 

100 mg/L BG solution (20.0 mL) was added into 

each of the flasks. The mixtures were then agitated 

at 250 rpm at room temperature (25 °C). One flask 

was taken at the interval of 5, 10, 15, 20, 25, 30, 

60, 90, 120, 150, 180, 210 and 240 min. The 

filtrate was then analysed using UV-vis 

spectrophotometer. 

 

2.2.2. pH effect 

The pH of 10 mg/L BG solution (20.0 mL) was 

adjusted to 4, 6, 8 and 10 using NaOH and HNO3 

and measured using Thermo-Scientific pH meter. 

Each of the pH adjusted BG solution was then 

mixed with PS (0.4 g) and agitated at 250 rpm for 

2 h. The filtrate was collected and analysed using 

UV-vis spectrophotometer. 

 

2.2.3. Point of zero charge 

0.1 mol/L KNO3 solutions (20.0 mL) were 

prepared and their pH was adjusted to 2, 4, 6, 8 

and 10. These solutions were then mixed with PS 

(0.4 g) and agitated at 250 rpm for 24 h. The final 

pH was measured and the plot of ∆pH (final pH - 

initial pH) vs initial pH was used for the 

determination of PS’s point of zero charge. 

 

2.2.4. Effect of ionic strength 

10 mg/L BG solutions (20.0 mL) containing 

various concentration of KNO3 (0.01, 0.1, 0.2, 0.4, 

0.6 and 0.8 mol/L) solutions were prepared and 

mixed with PS (0.4 g). These mixtures were then 

agitated at 250 rpm for 2 h and the dye content was 

analysed. 

 

2.2.5. Adsorption isotherm 

A series of BG solution (20.0 mL) ranging from 

10 – 1000 mg/L was prepared and mixed with PS 

(0.4 g). The mixtures were agitated for 2 h at 250 

rpm before the filtrate was collected and analysed. 

 

2.2.6. Thermodynamic studies 

PS (0.4 g) was mixed with 50 mg/L BG solution 

and the mixture was agitated at 25, 40, 50, 60 and 

70 °C. The filtrate was collected and analysed. 

 

2.2.7. Regeneration 

Spent PS was collected from the agitation of PS 

with 100 mg/L BG solution and washed with 

distilled water to remove excess dye. It was then 

divided into three parts where one part was mixed 

with distilled water (50.0 mL); the other was 

mixed with 0.1 mol/L HNO3 (50.0 mL) and the 

final part was mixed with 0.1 mol/L NaOH (50.0 

mL). These mixtures were agitated for 2 h at 250 

rpm before they were filtered and further washed 

using distilled water until the filtrates were near 

neutral. The treated PSs were then dried in an oven 
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overnight before mixing them with fresh 100 

mg/L BG and the dye content was analysed using 

UV-vis spectrophotometer. This is considered as 

one cycle and the regeneration experiment was 

done for 5 cycles. 

 

3. Results and Discussion 

3.1. Adsorption parameters 

Parameters such as contact time for the adsorbent-

adsorbate system to reach equilibrium, effects of 

medium pH and ionic strength on BG removal 

were investigated. As shown in Figure 1, rapid 

removal of BG was observed during the first half 

an hour which then gradually slowed down to a 

plateau when full equilibrium is reached. This 

observation can be attributed to initial presence of 

a large number of active vacant sites on the surface 

of PS which allowed rapid adsorption of BG. 

However, over time as these sites began to be 

filled by dye molecules, the rate gradually 

decreased and eventually reached equilibrium. In 

this study, the best contact time was taken as 2 

hours and all subsequent experiments were carried 

out using this contact time, unless otherwise 

stated. 

 

Figure 1. Effect of contact time for the removal of 

BG onto PS [dye concentration =100 mg/L; dye 

volume = 20.0 mL; mass of  PS = 0.04 g; ambient 

pH; stirring rate = 250 rpm and room temperature] 

 

When the effect of medium pH was tested over the 

range of pH 4 to 10, the adsorbent showed a 

reduction of 40% BG removal at high pH, while at 

pH 4 a slight reduction of 8% was observed 

(Figure 2). 

 

The point of zero charge (pHpzc) of PS was found 

to be at pH 3.53, as shown in Figure 3. Any pH > 

pHpzc will result in deprotonation of the surface  

 
Figure 2. Effect of medium pH on the adsorption of 

BG onto PS [contact time = 2 h; dye concentration 

=10 mg/L; dye volume = 20.0 mL; mass of PS = 0.04 

g; stirring rate = 250 rpm and room temperature]. 

 

 
Figure 3. Point of zero charge of PS [contact time = 

24 h; salt solution volume = 20.0 mL; mass of PS 

=0.04 g; stirring rate =250 rpm and room 

temperature]. 
 

functional groups of PS, causing the surface to be 

predominantly negative in charge. Since BG is a 

cationic dye, this will enhance attraction between 

the dye molecules and the negatively charged 

surface, resulting in higher removal of BG as 

shown by the increase in percentage removal from 

pH 4 to 6. From pH 8 to 10, a drastic reduction 

was observed. Cheing et al26 reported that BG is 

unstable at pH < 3 and pH > 10. From their study, 

it was also shown that the absorbance of BG was 

greatly reduced at pH 10 due to alkaline fading,27 

which could explain the 40% reduction observed 

in this study. While at low pH, the formation of 

BGH2+ also causes the fading of the dye colour 

intensity. Further, when pH < pHPZC, both the 

surface of PS and BG will be positively charged 

due to protonation taking place and this results in 

an electrostatic repulsion between the adsorbate 

and the adsorbent. Hence, a decrease in the dye 

removal. Similar finding was reported for 

kaolin.28 
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Since the removal of BG by PS was 82% at 

untreated (ambient) pH, which was comparable to 

that of pH 6 with the highest observed percentage 

removal of 85%, no medium pH adjustment was 

deemed necessary and the ambient pH was used 

throughout this study. 

 

The effect on ionic strength using 0 to 0.8 mol/L 

KNO3 showed that PS was resilient to change in 

salt concentration (Figure 4). It was able to 

maintain good adsorption of BG over the range 

studied with only 9% reduction being observed at 

0.1 mol/L KNO3. Many reported adsorbents such 

as duckweed,29 breadnut peel,29 leaf11 and stem 

axis of Artocarpus odoratissimus,30 showed 

drastic reduction of more than 30% in adsorption 

capacity towards adsorbates with increasing salt 

concentration. Since salts are usually present in 

wastewater, the fact that PS was still able to 

maintain good adsorption capacity indicates its 

potential as an adsorbent in wastewater 

remediation. 

 

 
Figure 4. Effect of ionic strength on the adsorption 

of BG onto PS at different [KNO3] PS [contact time 

= 2 h; dye concentration =100 mg/L; dye volume = 

20.0 mL; mass of PS =0.04 g; ambient pH; stirring 

rate =250 rpm and room temperature]. 

 

3.2. Adsorption isotherm of BG onto PS 

Adsorption isotherm was carried out for BG dye 

concentrations ranging from 0 – 1000 mg L-1 and 

the experimental data was fitted to the 

Langmuir,31 Freundlich32 and Sips33 isotherm 

models, whose linearised equations are shown 

below: 

 

Langmuir: 
𝐶𝑒

𝑞𝑒
=  

1

𝑏 𝑞𝑚𝑎𝑥
+ 

𝐶𝑒

𝑞𝑚𝑎𝑥
                  (3) 

 

Freundlich: ln 𝑞𝑒 =  
1

𝑛𝐹
ln 𝐶𝑒 + ln 𝐾𝐹   (4) 

Sips: ln (
𝑞𝑒

𝑞𝑚𝑎𝑥− 𝑞𝑒
) =  

1

𝐾𝐿𝐹
𝑙𝑛𝐶𝑒 + 𝑙𝑛𝐾𝑠    (5) 

 

where qmax (mg/g) is the maximum adsorption 

capacity, KL (L/mg) is the Langmuir constant, KF 

(mg/g(Lmg-1)1/n) is the adsorption capacity, nF 

value (between 1 and 10) indicates favourability 

of the adsorption process, KS (L/g) is the Sips 

constant and KLF is the exponent.  

 

The Langmuir model assumes a monolayer 

adsorption where once the active sites are being 

occupied by the dye molecules, no more 

adsorption will take place. The Freundlich model, 

on the other hand, assumes that even though the 

active sites have been occupied by dye molecules, 

more adsorption is still possible through multi-

layer adsorption. Unlike the Langmuir and the 

Freundlich models which are two parameter 

models, the Sips model is a three parameter model 

which is often known as the Langmuir-Freundlich 

model. As the name implies, the Sips is a 

combination of the Langmuir and Freundlich 

models where at high adsorbate concentration, it 

follows Langmuir model and follows Freundlich 

model at low adsorbate concentration.34 Based on 

the coefficient of determination (R2), as shown in 

Table 1, the order of best fit model for the 

adsorption of BG onto PS is Freundlich > Sips > 

Langmuir. The adsorption is also favorable as 

indicated by nF >1, which is further confirmed by 

1/n lying between 0 and 1 showing adsorption is 

favorable and heterogeneous. The suitability of 

the isotherm models was also analysed using two 

error functions i.e. Marquart’s percent standard 

deviation (MPSD) (Equation 6) and Chi-test (2) 

(Equation 7). Relying on just the R2 can be 

inaccurate as there have been many reports where 

isotherm models with high R2 values gave high 

errors as well. From the error values as shown in 

Table 1, it can be seen that the Freundlich model 

gave the lowest values, followed by the Sips 

model, with the Langmuir model giving the 

highest error values.  

MPSD: 100 √
1

𝑛−2
∑ (𝑞𝑒,𝑚𝑒𝑎𝑠 −  𝑞𝑒,𝑐𝑎𝑙𝑐)2𝑛

𝑖=1     (6) 

 

𝜒2 : ∑
(𝑞𝑒,𝑚𝑒𝑎𝑠− 𝑞𝑒,𝑐𝑎𝑙𝑐)2

𝑞𝑒,𝑚𝑒𝑎𝑠

𝑚
𝑖=1                 (7) 
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where qe,meas is the experimental value while qe,calc 

is the calculated value and n is the number of data 

in the experiment. Smaller values of these error 

analysis indicates the better curve fitting.35 

 
Table 1. Adsorption isotherm models and their 

parameters 

Models Parameters Values 

Langmuir 

 

 

qmax (mg/g) 324.98 

b (L/mg) 0.003 

R2 0.835 

MPSD 20.35 

2 26.21 

Freundlich 

 

 

KF[(mg/g)(L/mg)1/n] 2.988 

nF 1.472 

1/n 0.679 

R2 0.993 

MPSD 11.55 

2 11.95 

Sips 

 

 

qmax (mg/g) 400.00 

KS (L/g) 0.005 

KLF 1.17 

R2 0.971 

MPSD 18.78 

2 21.37 

 

The maximum adsorption capacity (qmax) of PS for 

adsorption of BG is 400 mg/g and 325 mg/g based 

on the Sips and Langmuir isotherm models, 

respectively. When these values were compared to 

other reported adsorbents for the removal of BG, 

PS is indeed a very good low-cost adsorbent as 

shown by its high qmax value in Table 2. 

 
Table 2. Maximum adsorption capacity of BG by 

various adsorbents. 

Adsorbent 
qmax 

(mg/g) 
References 

Pomelo skin 400 This work 

Peat 266 26 

Cempedak durian peel 98 36 

Red clay 125 37 

Rice straw biochar 111 38 

Luffa cylindrical sponge 18 39 

Neem leaves 134 40 

 

3.3. Thermodynamics and kinetics studies on the 

adsorption of BG onto PS 

Thermodynamics studies were carried out at 

temperatures ranging from 298 – 343 K and the 

data were fitted into Van’t Hoff equation shown 

below: 

∆𝐺° =  −𝑅𝑇 𝑙𝑛 𝐾    (8) 

𝐾 =  
𝐶𝑠

𝐶𝑒
     (9) 

∆𝐺° =  ∆𝐻° − 𝑇∆𝑆°    (10) 

 

Inserting Equation 8 into Equation 10: 

 

ln 𝐾 =  
∆𝑆°

𝑅
−  

∆𝐻°

𝑅𝑇
   (11) 

 

where K is the distribution coefficient for 

adsorption, CS is the dye concentration adsorbed 

on PS (mg/L),  R is the gas constant (J/mol K) and 

T is the absolute temperature (K). 

 

In Table 3, it was found that the amount of BG 

adsorbed decreases as the temperature is raised, 

indicating an exothermic nature of the adsorption 

process. This was confirmed by the negative 

enthalpy (H) of -16.42 kJ/mol. Negative 

entropy (S) and decreasing negativity of the 

Gibbs energy (G) point to the adsorption 

process showing less freedom of movement of 

molecules and less spontaneous as the temperature 

increases. 

 
Table 3. Thermodynamics parameters for the 

adsorption on BG onto PS. 

Temp 

 (K) 

∆G°  

(kJ/mol) 

∆H°  

(kJ/mol) 

∆S°  

(J/mol K) 

qe 

(mg/g) 

298 -1.999 

-16.418 -48.089 

18.41 

313 -1.407 16.90 

323 -1.038 15.84 

343 0.196 12.89 

 

Kinetics study was carried out using 100 mg/L BG 

at room temperature. The experimental data was 

fitted using the Lagergren first order41 and pseudo 

second order42 models, whose equations are as 

follow: 

 

Lagergren first order: 

log (qe, expt − qt ) = log qe, expt − 
𝑡

2.303
 k1 (12) 

 

Pseudo second order: 
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𝑡

𝑞𝑡
=  

1

𝑞𝑒,𝑒𝑥𝑝𝑡
2𝑘2 

+  
𝑡

𝑞𝑒,𝑒𝑥𝑝𝑡
  (13) 

 

where t is the time shaken (min), qt is the adsorbate 

adsorbed per gram of adsorbent (mg/g) at time t, 

k1 is the Lagergren first order rate constant 

(1/min), k2 is pseudo second order rate constant 

(g/mg min). 

 

From Figure 5 and Table 4 the data clearly show 

that of the two kinetics models used, the 

Lagergren first order model even though has a 

high R2 is not the suitable model since the 

experimental qe,expt of 23.91 mg/g is far from the 

calculated qe,calc of 8.42 mg/g. On the other hand, 

the pseudo second order kinetics gave a higherR2 

which is very close to unity. Its qe,calc (23.57 mg/g) 

is also in good agreement with the qe,expt. Hence, it 

is concluded that the adsorption of BG onto PS 

follows the pseudo second order kinetics with rate 

constant k2 of 0.011 g/mg min. 

 

 

 
Figure 5. Adsorption kinetics based on the 

Lagergren first order (top) and the pseudo second 

order (bottom). 

Table 4. Kinetics parameters for the adsorption of 

BG onto PS. 

  Lagergren first order 

qe, expt 

(mg/g) 

qe, calc 

(mg/g) 

k1 

(1/min) 

R2 

 

23.91 

  

8.42 0.032 0.931 

pseudo second order 

qe, calc 

(mg/g) 

k2 

(g/mg min) R2 

23.57 0.011 0.997 

 

Intra-particle diffusion 

k3(mg/g min1/2) C R2 

Region 1 2.396 8.20 0.934 

Region 2 0.055 22.35 0.115 

 

Further investigation of the adsorption kinetics 

using the Weber Morris intra-particle diffusion43 

(Equation 14), showed that pore diffusion was not 

the rate determining step since the plot did not 

pass through the origin as shown in Figure 6. 

 

Weber Morris intra-particle diffusion: 

qt = k3 t
1/2 + C    (14) 

K3 is the intraparticle diffusion rate constant 

(mmol/g min1/2) and C is the slope that represents 

the thickness of the boundary layer. 

 

 

Figure 6. Adsorption kinetics based on the Weber 

Morris intra-particle diffusion model. 

 

3.4. Regeneration of PS 

In order to test the reusability of spent-PS, 

regeneration studies were carried out using three 

methods of washing after each adsorption i.e. 

washing with distilled water, acid and base. Under 

the experimental conditions used, all three 

methods gave higher removal of BG even after 4 

consecutive cycles (Figure 7). However, a 
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reduction of about 20% in removal of dye was 

observed for washing with water in the 5th cycle 

compared to the spent-PS. Nevertheless both acid 

and base wash were able to maintain high removal 

of BG even at the 5th cycle, with the base being a 

more superior method of treatment. The reason 

could be that base treatment is known to remove 

the surface fats and waxes44 thereby exposing the 

functional groups on the surface which in turn will 

enhance adsorption with the dye molecules. 

 

 
Figure 7. Regeneration of spent PS using water, base 

and acid treatment PS [contact time = 2 h; dye 

concentration =100 mg/L; dye volume = 20.0 mL; 

mass of PS =0.04 g; ambient pH; stirring rate =250 

rpm and room temperature]. 

 

4. Conclusion 

This study has shown that pomelo skin, which is 

often discarded as waste and of no economic 

value, can be converted to a valuable adsorbent for 

the removal of Brilliant green dye. Fast contact 

time to reach equilibrium, resilient to ionic 

strength, high maximum adsorption capacity 

together with the ability to regenerate and reuse 

the spent pomelo skin make it a potential and 

attractive low-cost candidate as an adsorbent in 

real life application for the treatment of 

wastewater. 
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