Maximum boundaries for cones of continuous functions on a compact space and integral representations for linear functionals

Foo Chui Chen and Walter Roth*

Department of Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam

*corresponding author email: walter.roth@ubd.edu.bn

Abstract

We present a simplified and easily accessible approach to the integral representation for continuous linear functionals on a cone of continuous real-valued functions on a compact set. The measures defining these integrals are supported by the maximum boundary of the respective cones.

Index Terms: spaces and cones of continuous functions, integral representation

1. Introduction

The concept of a maximum boundary for an algebra of continuous functions on a compact space was first proposed by Georgii Šilov in 1964 [6]. It was later generalized to vector spaces of continuous functions not necessarily closed for multiplication using rather demanding and complicated techniques from Choquet theory (see [1], [4] and [2]). These also generate our results concerning integral representations for continuous linear functionals on these spaces. We offer a much simplified and more easily accessible approach in this paper while also generalizing the concepts from linear spaces to cones of continuous functions.

2. Maximum Boundaries

Let X be a compact Hausdorff space and $C(X)$ the Banach space of all continuous functions on X endowed with the maximum norm, that is

$$\|f\| = \max\{|f(x)| \mid x \in X\}.$$

for $f \in C(X)$. A non-empty subset H of $C(X)$ is a called a subcone of $C(X)$ if

$$f + g \in H \quad \text{and} \quad \alpha f \in H,$$

whenever $f, g \in H$, and $\alpha \geq 0$. Linear subspaces are of course subcones in this sense. For a function $f \in C(X)$ and a closed subset Y of X we abbreviate

$$\max(f, Y) = \max\{|f(x)| \mid x \in Y\}.$$

Given a subcone H of $C(X)$, a closed subset Y of X is called a (maximum) boundary for H if

$$\max(f, Y) = \max(f, X)$$

holds for all $f \in H$, that is if all functions in H attain their maximum value on Y. If H is indeed a linear subspace of $C(X)$, then the functions in H also take their minimum values on Y, since a function $f \in H$ takes its minimum value where $-f \in H$ takes its maximum value. We shall use Zorn's Lemma to prove that for every subcone of $C(X)$ there is a minimal boundary $B \subset X$ of this type. Minimality means that $B = Y$ whenever Y is a boundary for H such that $Y \subset B$.

Proposition. 2.1. For every subcone H of $C(X)$ there exists a minimal boundary $B \subset X$.

Proof: Let B denote the (non-empty) collection of all boundaries for H, ordered by set inclusion and let \mathcal{C} be a downward chain in B. We shall verify that

$$C_0 = \bigcap \{C \in \mathcal{C}\}$$
is a lower bound for \(\mathcal{C} \) in \(\mathcal{B} \). Indeed, \(C_0 \) is closed in \(X \) and a subset of all sets in \(\mathcal{C} \). For a function \(f \in H \) let
\[
Y_f = \{ y \in X | f(y) = \max(f,X) \}.
\]
This is a non-empty compact subset of \(X \), and \(Y_f \cap B \neq \emptyset \) for every boundary \(B \in \mathcal{B} \). If we had \(Y_f \cap C_0 = \emptyset \), then we would have \(Y_f \cap C = \emptyset \) for some \(C \in \mathcal{C} \) by the finite intersection property of closed sets in a compact space. Thus \(Y_f \cap C \neq \emptyset \) and
\[
\max(f,C_0) = \max(f,X).
\]
Thus \(C_0 \in \mathcal{C} \) as claimed. Following Zorn’s Lemma, \(\mathcal{B} \) then contains a minimal element. □

A minimal boundary of a subcone is, however, not necessarily unique, as the following example will show.

Example 2.2. Let \(X = [-1, +1] \) and let \(H \) be the subspace of all even functions in \(C([-1, +1]) \). That is
\[
H = \{ f \in C(X) | f(x) = f(-x) \text{ for all } x \in X \}.
\]
Then \(B = [0,1] \) is a minimal boundary for \(H \). Indeed, every function \(f \in H \) obviously takes its maximum (and minimum) value on \(B \). On the other hand, if \(Y \) is a closed subset of \(B \) such that \(Y \neq B \), then the open complement \(Y^c \) of \(Y \) contains a point \(0 \leq x \in B \) and its negative \(-x \), and there is \(\varepsilon > 0 \) such that both intervals \((x - \varepsilon, x + \varepsilon) \) and \((-x - \varepsilon, -x + \varepsilon) \) are contained in \(Y^c \). There is \(f \in C([-1, +1]) \) such that \(f(x) = 1 \) and \(f(y) = 0 \) for all \(y \notin (x - \varepsilon, x + \varepsilon) \). The function
\[
y \to f(y) + f(-y)
\]
is in \(H \) and attains its maximum value outside \(Y \). Thus \(Y \) is not a boundary for \(H \). A similar argument shows that \(B' = [-1,0] \) is also a minimal boundary for \(H \), and these boundaries are therefore not unique in this case.

This deficit can however be remedied if we impose an additional assumption on the subcone \(H \) of \(C(X) \). We shall say that \(H \) (symmetrically) separates the points of \(X \) if for any two distinct points \(x, y \in X \) there is a function \(f \in H \) such that \(f(x) < f(y) \). Note that for a vector subspace \(H \) this notion coincides with the usual one, that is: for any two distinct points \(x, y \in X \) there is a function \(f \in H \) such that \(f(x) \neq f(y) \).

Lemma 2.3. Let \(H \) be a subcone of \(C(X) \) which separates the points of \(X \).

(a) For any two distinct points \(x, y \in X \) and \(\alpha \in \mathbb{R} \) there is a function \(f \in H \) such that \(f(y) = f(x) + \alpha \).

(b) For a compact subset \(K \) of \(X \) and \(x \in X \setminus K \) there are functions \(f_1, ..., f_n \in H \) such that the open neighborhood of \(x \)
\[
U = \{ y \in X | f_i(y) < f_i(x) + 1 \text{ for } i = 1, ..., n \}
\]
is disjoint from \(K \).

Proof: (a) Let \(x \) and \(y \) be distinct points of \(X \) and \(\alpha \in \mathbb{R} \). Since \(H \) separates the points of \(X \) we can choose a function \(h \in H \) such that either \(h(x) < h(y) \), in the case that \(\alpha \geq 0 \), or \(h(x) > h(y) \), in the case that \(\alpha < 0 \). The function
\[
f = \frac{\alpha}{h(y) - h(x)} h \in H
\]
has the required property.

(b) Let \(K \) be a compact subset of \(X \) and \(x \in X \setminus K \). For every \(y \in K \) there is by Part (a) a function \(f_y(y) = f_y(x) + 2 \). Set
\[
U_y = \{ z \in X | f_y(z) > f_y(x) + 1 \}
\]
The family \(\{U_y\}_{y \in K} \) forms an open cover for \(K \) and therefore contains a finite subcover \(U_1, ..., U_n \) corresponding to the functions \(f_1, ..., f_n \in H \). These functions satisfy the claim of Part (b). Indeed, the open set
\[
U = \{ y \in X | f_i(y) < f_i(x) + 1 \text{ for } i = 1, ..., n \}
\]
contains the point \(x \) and is disjoint from \(K \), since for every \(y \in K \) at least one of the functions \(f_i \) has the property that \(f_i(y) > f_i(x) + 1 \). □

Proposition 2.4. For a subcone \(H \) of \(C(X) \) which separates the points of \(X \) there exists a unique
minimal boundary \(B \), that is every other boundary for \(H \) contains \(B \).

Proof: We have to verify only uniqueness. Let \(B \) be a minimal boundary for \(H \) and let \(Y \) be a second boundary. Let us assume to the contrary of our claim that \(B \not\subseteq Y \). Then there is \(x_0 \in B \setminus Y \). Following Lemma 3 (b) there are \(f_1, ..., f_n \in H \) such that

\[
U = \{ y \in X \mid f_i(y) < f_i(x_0) + 1 \text{ for } i = 1, ..., n \}
\]

contains \(x_0 \) and is disjoint from \(Y \). The set

\[
B \setminus U = B \cap (X \setminus U)
\]

is closed and is a proper subset of \(B \), since it does not contain \(x_0 \in B \). Therefore due to the minimality of \(B \) it is not a boundary for \(H \). Thus we can find a function \(f \in H \) such that

\[
\max(f, B \setminus U) < \max(f, X).
\]

On the other hand since \(Y \) is a boundary for \(H \) we can find \(y \in Y \) such that

\[
f(y) = \max(f, X),
\]

and since \(y \not\in U \) there is \(k \in \{1, ..., n\} \) such that \(f_k(y) \geq f_k(x_0) + 1 \). Next we choose \(\alpha \geq 0 \) and consider the function \(g = \alpha f + f_k \in H \).

If \(x \in U \) then

\[
\alpha f(x) + f_k(x) < \alpha \max(f, X) + f_k(x_0) + 1.
\]

If \(x \in B \setminus U \), then

\[
\alpha f(x) + f_k(x) \leq \alpha \max(f, B \setminus U) + \max(f_k, X).
\]

Thus if we choose \(\alpha \geq 0 \) such that

\[
\alpha(\max(f, X) - \max(f, B \setminus U)) > \max(f_k, X) - f_k(x_0) - 1
\]

then we have

\[
\alpha f(x) + f_k(x) < \alpha \max(f, X) + f_k(x_0) + 1
\]

for all \(x \in B \), and hence

\[
\max(\alpha f + f_k, X) = \max(\alpha f + f_k, B) < \alpha \max(f, X) + f_k(x_0) + 1.
\]

since \(B \) is a boundary for \(H \). On the other hand we have

\[
\alpha f(y) + f_k(y) = \alpha \max(f, X) + f_k(y) \geq \alpha \max(f, X) + f_k(x_0) + 1
\]

Thus

\[
\max(\alpha f + f_k, X) \geq \alpha \max(f, X) + f_k(x_0) + 1,
\]

contradicting the above. \(\square \)

The unique minimal boundary of a subcone of \(C(X) \), if it exists, is also called the Šilov boundary of this subcone.

Integral representations for linear functionals

A *linear functional* \(I \) on a subcone \(H \) of \(C(X) \) is a mapping \(I : H \rightarrow \mathbb{R} \) such that

\[
I(f + g) = I(f) + I(g) \quad \text{and} \quad I(\alpha f) = \alpha I(f)
\]

for all \(f, g \in H \) and \(\alpha \geq 0 \). A linear functional \(I \) on \(H \) is called *u-continuous* if there is a constant \(C \geq 0 \) such that

\[
I(f) \leq I(g) + C \quad \text{whenever} \quad f \leq g + 1
\]

for \(f, g \in H \). This condition implies that \(I \) is *monotone*, that is

\[
I(f) \leq I(g) \quad \text{whenever} \quad f \leq g
\]

for \(f, g \in H \). We observe the following:

Lemma. 3.1. If the subcone \(H \) of \(C(X) \) contains a strictly positive function \(f_0 \), then every monotone linear functional on \(H \) is continuous.

Proof: Let \(I \) be a monotone linear functional on \(H \) and let \(f_0 \in H \) be strictly positive. Thus

\[
\alpha = \min\{f_0(x) \mid x \in X\} > 0.
\]

Let \(f, g \in H \) such that \(f \leq g + 1 \). Then

\[
f \leq g + 1 \leq g + \frac{1}{\alpha} f_0,
\]

and therefore

\[
I(f) \leq I(g) + \frac{1}{\alpha} I(f_0)
\]

using the monotonicity of \(I \). \(\square \)

We shall use the classical Riesz-Markov representation theorem (see for example Theorem
II.1.2 in [3]) for linear functionals on $C(X)$ spaces in order to derive a more general result for linear functionals on a subcone H of $C(X)$. The resulting representation measures are supported by a boundary for H.

Theorem. 3.2. Let H be a subcone of $C(X)$ and let $B \subseteq X$ be a boundary for H. For every u-continuous linear functional I on H there exists a positive regular Borel measure μ on X which is supported by B and such that

\[I(f) \leq \int_X f \, d\mu \quad \text{for all } f \in H. \]

Proof: Let I be a u-continuous linear functional on H and let $C \geq 0$ such that

\[I(f) \leq I(g) + C \quad \text{whenever } f \leq g + 1 \]

for $f, g \in H$. For a function $f \in C(X)$ we denote by $f|_B$ its restriction to the subset B of X. We have $\max(f|_B, B) = \max(f, X)$ for all $f \in H$, since B is a boundary for H. We define a \mathbb{R}-valued sublinear functional p on $C(B)$ by

\[p(f) = C \max(f, B) \]

for all $f \in C(B)$ and a $(\mathbb{R} \cup -\infty)$-valued superlinear functional q by

\[q(f) = \sup \{ I(h) | h \in H, h|_B \leq f \} \]

for $f \in C(B)$. As usual, we set $\sup \emptyset = -\infty$. Moreover, q does not take the value $+\infty$, since $h|_B \leq f$ for $f \in C(B)$ and $h \in H$ implies that $h|_B \leq \max(f, B)$, hence $h \leq \max(f, B)$ and therefore

\[I(h) \leq C \max(f, B) = p(f), \]

using the u-continuity of I. This shows that

\[q(f) \leq p(f) \quad \text{for all } f \in C(X). \]

The sublinearity of p and the superlinearity of q are easily checked. Let us verify just one of the requirements for q: If

\[h_1|_B \leq f \quad \text{and} \quad h_2|_B \leq g \]

for $h_1, h_2 \in H$ and $f, g \in C(B)$, then

\[h_1|_B + h_2|_B \leq f + g, \]

hence

\[I(h_1) + I(h_2) \leq q(f + g) \]

and therefore

\[q(f) + q(g) \leq q(f + g). \]

Now according to the sandwich version of the Hahn-Banach theorem (see for example Corollary 1.3.26 in [3]) there exists a linear functional L on $C(B)$ such that

\[q(f) \leq L(f) \leq p(f) \]

for all $f \in C(X)$. We observe the following:

(i) L is bounded, that is continuous. Indeed, if $f \leq 1$ for $f \in C(B)$, then $L(f) \leq p(f) \leq C$, hence if $\|f\| \leq 1$ then $|L(f)| \leq C$.

(ii) L is monotone. Indeed, if $f \leq 0$ for $f \in C(B)$ then $L(f) \leq p(f) \leq 0$, hence if $f \leq g$ for $f, g \in C(B)$ then $f - g \leq 0$, and therefore

\[L(f) - L(g) = L(f - g) \leq 0. \]

(iii) $L(f|_B) \geq I(f)$ for all $f \in H$. Indeed, following the definition of the superlinear functional q we have

\[L(f|_B) \geq q(f|_B) \geq I(f). \]

Next we apply the Riesz-Markov representation theorem (see Theorem II.1.2 in [3]): there is a regular Borel measure $\tilde{\mu}$ on B such that

\[L(f) = \int_B f \, d\tilde{\mu} \quad \text{for all } f \in C(B). \]

The measure $\tilde{\mu}$ on B corresponds to a regular Borel measure μ on X if we set

\[\mu(A) = \tilde{\mu}(B \cap A) \]

for every Borel subset A of X. This yields

\[\int_X f \, d\mu = \int_B f \, d\tilde{\mu} = \int_B f|_B \, d\tilde{\mu} \]

for all $f \in C(X)$, and in particular
\[\int_X f \, d\mu = \int_B f \, d\mu = \int_B f \, d\mu = L(f|_B) \geq I(f) \]

for all \(f \in H \), our claim. \(\Box \)

The statement of Theorem 3.2 can be further developed in the case that \(H \) is indeed a vector subspace of \(\mathcal{C}(X) \). It has been shown (see Theorem 3.3 and Corollary 4.4 in [5]) that in this case every continuous linear functional \(I \) on the subspace \(H \) of \(\mathcal{C}(X) \) can be expressed as a difference of two u-continuous ones, that is there are u-continuous linear functionals \(I_1 \) and \(I_2 \) on \(H \) such that

\[I(f) = I_1(f) - I_2(f) \]

for all \(f \in H \). Using Theorem 3.2 the functionals \(I_1 \) and \(I_2 \) can be represented by positive regular Borel measures \(\mu_1 \) and \(\mu_2 \), respectively. That is, we have

\[I_1(f) = \int_X f \, d\mu_1 \quad \text{and} \quad I_2(f) = \int_X f \, d\mu_2 \]

for all \(f \in H \). Equality in these representations follows since \(-f \in H \) whenever \(f \in H \). Consequently, the signed measure \(\mu = \mu_1 - \mu_2 \) is supported by \(B \) and represents the functional \(I \) on \(H \), that is

\[I(f) = I_1(f) - I_2(f) = \int_X f \, d\mu_1 - \int_X f \, d\mu_2 \]

\[= \int_X f \, d\mu \]

for all \(f \in H \). We summarize:

Corollary. 3.3. Let \(H \) be a linear subspace of \(\mathcal{C}(X) \) and let \(B \subset X \) be a boundary for \(H \). For every bounded linear functional \(I \in H^* \) there exists a regular Borel measure \(\mu \) on \(X \) which is supported by \(B \) and such that

\[I(f) = \int_X f \, d\mu \quad \text{for all} \quad f \in H. \]

Examples 3.4. (a) Let \(X \) be the closed unit disc in \(\mathbb{R}^2 \) and let \(H \) be the subcone of \(\mathcal{C}(X) \) consisting of those functions \(f \in \mathcal{C}(X) \) that are subharmonic in the interior of \(X \), that is

\[\frac{\partial^2 f}{\partial x^2}(x, y) + \frac{\partial^2 f}{\partial y^2}(x, y) \geq 0 \]

for all \((x, y)\) in the interior of \(X \). The subcone \(H \) symmetrically separates the points of \(X \) and contains the constants, and it is well known that its minimal boundary (Šilov boundary) consists of the circle line in this case, that is

\[B = \{(x, y) \mid x^2 + y^2 = 1\}. \]

According to Theorem 3.2 every monotone (therefore u-continuous by Lemma 3.1) linear functional on \(H \) can be represented by a positive regular Borel measure on \(B \). This is best dealt with in polar coordinates \((r, \phi)\), where the subharmonic inequality translates into

\[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} \geq 0 \]

For a point evaluation at a point in the interior of \(X \) with the polar coordinates \((r, \theta)\), that is \(r < 1 \), this representation is given by the Poisson Integral Formula

\[f(r, \theta) \leq \frac{1 - r^2}{2\pi} \int_0^{2\pi} \frac{f(1, \phi)}{1 - 2r \cos(\theta - \phi) + r^2} \, d\phi \]

for every subharmonic function \(f \in H \). The representation measure \(\mu \) on \(B \) for this point evaluation is therefore the Lebesgue measure with the density function

\[(1, \phi) \rightarrow \frac{1}{2\pi} \frac{1 - r^2}{1 - 2r \cos(\theta - \phi) + r^2}. \]

For the subspace \(L \) of all harmonic functions, that is \(L = H \cap (-H) \), the above inequality turns into an equality, that is we have
\[
f(r, \theta) = \frac{1 - r^2}{2\pi} \int_0^{2\pi} f(1, \phi) \frac{1}{1 - 2r \cos(\theta - \phi) + r^2} \, d\phi
\]

for every harmonic function \(f \in L \).

(b) Let \(X \) be a compact convex subset of a normed space (or a Hausdorff locally convex topological vector space). Recall that convexity means that \(\lambda x + (1 - \lambda)y \in X \) whenever \(x, y \in X \) and \(0 \leq \lambda \leq 1 \). An extreme point of \(X \) is a point \(x \in X \) such that

\[
x = \lambda y + (1 - \lambda)z
\]

for \(y, z \in X \) and \(0 < \lambda < 1 \) implies that \(x = y = z \), that is \(x \) is not an interior point of a line segment in \(X \). A function \(f : X \to \mathbb{R} \) is said to be convex if

\[
f(x) \leq \lambda f(y) + (1 - \lambda)f(z)
\]

whenever \(x = \lambda y + (1 - \lambda)z \) for \(y, z \in X \) and \(0 \leq \lambda \leq 1 \). The subcone \(H \) of all convex functions in \(C(X) \) symmetrically separates the points of \(X \) (this follows from the Hahn-Banach theorem) and contains the constants. According to the Krein-Milman theorem its minimal boundary \(B \) is the closure of the set of all extreme points of \(X \).

For a concrete example let \(X \) be a closed convex polygon in \(\mathbb{R}^2 \) with the vertices \(P_1, ..., P_n \). Then \(B = \{P_1, ..., P_n\} \) is the Šilov boundary for \(H \) and according to Theorem 3.2 every monotone linear functional \(I \) on \(H \) can be represented by a regular Borel measure \(\mu \) on \(B \). But the measures on the finite set \(B \) are just linear combinations of point evaluations \(\delta_{P_i} \). If in particular the functional \(I \) is monotone, and therefore u-continuous, then \(\mu \) is a convex combination of these point evaluations, that is

\[
\mu = \lambda_1 \delta_{P_1} + \cdots + \lambda_n \delta_{P_n},
\]

where \(\lambda_1, ..., \lambda_n \geq 0 \) and \(\lambda_1 + \cdots + \lambda_n = I(1) \).

Thus

\[
I(f) \leq \int_X f \, d\mu = \lambda_1 f(P_1) + \cdots + \lambda_n f(P_n)
\]

for all \(f \in H \). For affine functions, that is functions in \(L = H \cap (-H) \), and a continuous (not necessarily monotone) linear functional \(I \) on \(L \) we obtain according to Corollary 3.3 a similar representation, that is

\[
I(f) = \int_X f \, d\mu = \lambda_1 f(P_1) + \cdots + \lambda_n f(P_n)
\]

where \(P_i \in B \) and \(\lambda_i \in \mathbb{R} \) for \(i = 1, ..., n \).

References

