Mathematics

Scientia Bruneiana Special Issue

2016

Maximum boundaries for cones of continuous functions on a compact
space and integral representations for linear functionals

Foo Chui Chen and Walter Roth*

Department of Mathematical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan
Tungku Link, Gadong, BE 1410, Brunei Darussalam

*corresponding author email: walter.roth@ubd.edu.bn

Abstract

We present a simplified and easily accessible approach to the integral representation for continuous
linear functionals on a cone of continuous real-valued functions on a compact set. The measures
defining these integrals are supported by the maximum boundary of the respective cones.

Index Terms: spaces and cones of continuous functions, integral representation

1. Introduction

The concept of a maximum boundary for an
algebra of continuous functions on a compact
space was first proposed by Georgii Silov in 1964
[6]. It was later generalized to vector spaces of
continuous functions not necessarily closed for
multiplication using rather demanding and
complicated techniques from Choquet theory (see
[1], [4] and [2]). These also generate our results
concerning integral representations for continuous
linear functionals on these spaces. We offer a
much simplified and more easily accessible
approach in this paper while also generalizing the
concepts from linear spaces to cones of continuous
functions.

2. Maximum Boundaries
Let X be a compact Hausdorff space and C (X)

the Banach space of all continuous functions on
X endowed with the maximum norm, that is

I£1l = max{If (OI| x € X3.

for f € C(X). A non-empty subset H of C(X) is
a called a subcone of C(X) if

f+g€H and af €H,

whenever f,g € H, and @ > 0. Linear subspaces
are of course subcones in this sense. For a function
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fecCX) and a closed subset Y of X we
abbreviate

max(f,Y) = max{lf(x)|| X €Y}

Given a subcone H of C(X), a closed subset Y of
X is called a (maximum) boundary for H if

max(f,Y) = max(f, X)

holds for all f € H, that is if all functions in H
attain their maximum value on Y. If H is indeed a
linear subspace of C(X), then the functions in H
also take their minimum values on Y, since a
function f € H takes its minimum value where
—f € H takes its maximum value. We shall use
Zorn's Lemma to prove that for every subcone of
C(X) there is a minimal boundary B — X of this
type. Minimality means that B = Y whenever Y is
a boundary for H such that Y — B.

Proposition. 2.1. For every subcone H of C(X)
there exists a minimal boundary B — X.

Proof: Let B denote the (non-empty) collection of
all boundaries for H, ordered by set inclusion and
let € be a downward chain in B. We shall verify

that
Co = ﬂ{c € 6}
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is a lower bound for € in B. Indeed, C, is closed
in X and a subset of all sets in €. For a function
f € H let

Yy ={y € X| f(y) = max(f, X)}.

This is a non-empty compact subset of X, and ¥y N
B # @ for every boundary B € B. If we had Yy N
Co = @, then we would have Y N C = @ for some
C € € by the finite intersection property of closed
sets in a compact space. Thus Y; N C # @ and

max(f, Cy) = max(f, X).

Thus C, € € as claimed. Following Zorn's
Lemma, B then contains a minimal element. [

A minimal boundary of a subcone is, however, not
necessarily unique, as the following example will
show.

Example 2.2. Let X = [—1,+1] and let H be the
subspace of all even functions in C([—1, +1]),
that is

H={fecCcX)|f(x)=f(—x)forall x € X}.

Then B =[0,1] is a minimal boundary for H.
Indeed, every function f € H obviously takes its
maximum (and minimum) value on B. On the
other hand, if Y is a closed subset of B such that
Y # B, then the open complement Y¢ of Y
contains a point 0 < x € B and its negative - x,
and there is € > 0 such that both intervals (x —
g,x+e¢)and (—x —¢&,—x + ¢€) are contained in
Y¢. Thereis f € C([—1,+1]) such that f(x) =1
and f(y)=0 for all yg (x —¢&,x+¢€). The
function

y=>fM+f(=y)

is in H and attains its maximum value outside Y.
Thus Y is not a boundary for H. A similar
argument shows that B’ =[—1,0] is also a
minimal boundary for H, and these boundaries are
therefore not unique in this case.

This deficit can however be remedied if we
impose an additional assumption on the subcone
H of C(X). We shall say that H (symmetrically)
separates the points of X if for any two distinct
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points x, y € X there is a function f € H such that
f(x) < f(y). Note that for a vector subspace H
this notion coincides with the usual one, that is: for
any two distinct points x, y € X there is a function
f € Hsuch that f(x) # f(y).

Lemma. 2.3. Let H be a subcone of € (X) which
separates the points of X.

(a) For any two distinct points x,y € X and a €
R there is a function f € H such that f(y) =

f(x) +a.

(b) For a compact subset K of X and x € X\K
there are functions fi, ..., f, € H such that the
open neighborhood of x

U={yeX| ) <fi)+1fori=1,..,n}
is disjoint from K.

Proof: (a) Let x and y be distinct points of X and
a € R. Since H separates the points of X we can
choose a function h € H such that either h(x) <
h(y), in the case that @ > 0, or h(x) > h(y), in
the case that @ < 0. The function

a

“ho) -k €

f

has the required property.

(b) Let K be a compact subset of X and x € X\K.
For every y € K there is by Part (a) a function

fy(y) = fy(x) + 2. Set
Uy = (z € X1 @) > () + 1)

The family (U,),ex forms an open cover for K
and therefore contains a finite subcover Uy, ..., U,
corresponding to the functions fi,...,f, € H.
These functions satisfy the claim of Part (b).
Indeed, the open set

U={yeX|fiy)<fi(x)+1fori=1,..,n}

contains the point x and is disjoint from K, since
for every y € K at least one of the functions f; has
the property that f;(y) > fi(x) + 1. [0

Proposition. 2.4. For a subcone H of C (X) which
separates the points of X there exists a unique
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minimal boundary B, that is every other boundary
for H contains B.

Proof: We have to verify only uniqueness. Let B
be a minimal boundary for H and let Y be a second
boundary. Let us assume to the contrary of our
claim that BzY. Then there is x, € B\Y.
Following Lemma 3 (b) there are fi,...,f, €EH
such that

U={yeX|fily) <fi(xy)+1fori=1,..,n}
contains x, and is disjoint from Y. The set
B\U = B n (X\V)

is closed and is a proper subset of B, since it does
not contain x, € B. Therefore due to the
minimality of B it is not a boundary for H. Thus
we can find a function f € H such that

max(f, B\U) < max(f,X).

On the other hand since Y is a boundary for H we
can find y € Y such that

f () = max(f, X),

and since yeU there is k € {1, ...,n} such that
fi ) = fi.(xy) + 1. Next we choose a = 0 and
consider the function g = af + f;, € H.

If x € U then
af (x) + fi(x) < amax(f,X) + fi,(xo) + 1.

If x € B\U, then
af (x) + fr(x) < amax(f, B\U) + max(fy, X).

Thus if we choose a > 0 such that

a(max(f,X) — max(f, B\U))
> max(fi, X) — fr(xo) — 1
then we have

af (x) + fi(x) < amax(f,X) + fi.(xo) +1
for all x € B, and hence

max(af + fi, X) = max(af + fi,B) <
amax(f,X) + fi,(xo) + 1,

since B is a boundary for H. On the other hand
we have
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af ) + fi(¥) = amax(f,X) + fr. ()
> amax(f,X) + fi.(xo) + 1
Thus
max(af + fi, X) = amax(f,X) + fi.(xy) + 1,

contradicting the above. []

The unique minimal boundary of a subcone of
C(X), if it exists, is also called the Silov boundary
of this subcone.

Integral representations for linear functionals

A linear functional I on a subcone H of C(X) is a
mapping I : H = R such that

If+g9)=1(f)+1(g) and I(af) = al(f)

forall f,g € H and a = 0. A linear functional I
on H is called u-continuous if there is a constant
C > 0 such that

I(f) <I1(g)+C whenever f<g+1

for f, g € H. This condition implies that I is
monotone, that is

I(f) <1(g) whenever f<g

for f, g € H. We observe the following:

Lemma. 3.1. If the subcone H of C(X) contains
a strictly positive function f;, then every
monotone linear functional on H is continuous.

Proof: Let I be a monotone linear functional on
H and let f, € H be strictly positive. Thus

a = min{fy(x)| x € X} > 0.
Let f,g € Hsuchthat f < g+ 1. Then

1
ng+1Sg+am
and therefore

1) < 1(9) +21(f)

using the monotonicity of 1. [

We shall use the classical Riesz-Markov
representation theorem (see for example Theorem
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11.1.2 in [3]) for linear functionals on C (X) spaces
in order to derive a more general result for linear
functionals on a subcone H of C (X). The resulting
representation measures are supported by a
boundary for H.

Theorem. 3.2. Let H be a subcone of C(X) and
let Bc X be a boundary for H. For every u-
continuous linear functional I on H there exists a
positive regular Borel measure p on X which is
supported by B and such that

I(f)sf fdu forall f€H.
X

Proof: Let I be a u-continuous linear functional
on H and let C > 0 such that

I(f) <I1(g)+C whenever f<g+1

for f,g € H. For a function f € C(X) we denote
by f | its restriction to the subset B of X. We have
max(f|g, B) = max(f, X)

for all f € H, since B is a boundary for H. We
define a R-valued sublinear functional p on C(B)
by

p(f) = C max(f,B)

forall f € C(B) and a (R U —oo)-valued
superlinear functional g by

q(f) =sup{I(h)| h € H,h|p < f}

for f € C(B). As usual, we set sup® = —oo.
Moreover, g does not take the value +oo, since
hlg < f for f € C(B) and h € H implies that
h|p < max(f,B), hence h < max(f,B) and
therefore

I(h) < C max(f, B) = p(f),

using the u-continuity of I. This shows that

q(f) <p(f) forall f eC(X).

The sublinearity of p and the superlinearity of g
are easily checked. Let us verify just one of the
requirements for q: If

hilg<f and hylp<g
for hy,h, € Hand f,g € C(B), then
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hilg + h:lp < f + g,
hence
I(hy) +1(hy) < q(f +9)

and therefore
q(f)+q(9) <q(f + 9.

Now according to the sandwich version of the
Hahn-Banach theorem (see for example Corollary
1.3.26 in [3]) there exists a linear functional L on
C(B) such that

q(f) = L(f) =p(f)
forall f € C(X). We observe the following:

(1) L is bounded, that is continuous. Indeed, if f <
1 for f € C(B), then L(f) < p(f) < C, hence if
If1l < 1then |L(f)| < C.

(i) L is monotone. Indeed, if f < 0 for f € C(B)
then L(f) < p(f) <0, henceif f < gforf,ge€
C(B) then f — g < 0, and therefore

L(f)—1(g)=L(f—g) <0.

(i) L(flg) =I(f) for all f € H. Indeed,
following the definition of the superlinear
functional g we have

L(flg) =2 a(flp) = I(f).

Next we apply the Riesz-Markov representation
theorem (see Theorem 11.1.2 in [3]): there is a
regular Borel measure /i on B such that

L(f)=J fda forall fecC(B).
B

The measure fi on B corresponds to a regular
Borel measure p on X if we set

u(A) = (B nA)

for every Borel subset A of X. This yields

ijdu=fodu=jBf|Bdﬁ

forall f € C(X), and in particular
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| rau=[ rau=| sisda=rcris)
X BZI(f) B

forall f € H, our claim. [

The statement of Theorem 3.2 can be further
developed in the case that H is indeed a vector
subspace of C(X). It has been shown (see
Theorem 3.3 and Corollary 4.4 in [5]) that in this
case every continuous linear functional I on the
subspace H of C(X) can be expressed as a
difference of two u-continuous ones, that is there
are u-continuous linear functionals I, and I, on H
such that

I(f) = L(f) = L(f)

for all f € H. Using Theorem 3.2 the functionals
I; and I, can be represented by positive regular
Borel measures u, and u,, respectively. That is,
we have

L(f) = f fdu, and L(f) = f f dysy

for all f € H. Equality in these representations
follows since —f€H whenever f €H.
Consequently, the signed measure u = pu; — Uy is
supported by B and represents the functional I on
H, that is

1) = L(F) - L(f) = f

=fxfdu

forall f € H. We summarize:

fd.u1—Lfdl12

Corollary. 3.3. Let H be a linear subspace of
C(X) and let Bc X be a boundary for H. For
every bounded linear functional I € H* there
exists a regular Borel measure u on X which is
supported by B and such that

I(f)=f fdu forall f€H.
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Examples 3.4. (a) Let X be the closed unit disc in
R? and let H be the subcone of C(X) consisting of
those functions f € C(X) that are subharmonic in
the interior of X, that is

o’f o’f

R — >
axz (x'y) + ayz (X'Y) —_ 0

for all (x,y) in the interior of X. The subcone H
symmetrically separates the points of X and
contains the constants, and it is well known that its
minimal boundary (Silov boundary) consists of
the circle line in this case, that is

B = {(x,y)| x* +y* = 1}.

According to Theorem 3.2 every monotone
(therefore u-continuous by Lemma 3.1) linear
functional on H can be represented by a positive
regular Borel measure on B. This is best dealt with
in polar coordinates (r, ¢), where the subharmonic
inequality translates into

¢

or
For a point evaluation at a point in the interior of
X with the polar coordinates (r, 8), thatis r < 1,
this representation is given by the Poisson Integral

Formula
2 fZTL'
0

f(r,6)
1—7r
- 2m
for every subharmonic function f € H. The
representation measure u on B for this point
evaluation is therefore the Lebesgue measure with
the density function

10

1 2
6f>0
r or

+r—2w_

f(1,9)
1—2rcos(8 — ¢) +r?

d¢

1 1—1r2
2m 1 —2rcos(@ — @) +r?

(1,9) -

For the subspace L of all harmonic functions, that
is L = H n (—H), the above inequality turns into
an equality, that is we have
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f(r,@)
1—r

_271

2

f(1,9)
1—2rcos(8 — ¢) +r?

= d¢

j‘zﬂf
0

for every harmonic function f € L.

(b) Let X be a compact convex subset of a normed
space (or a Hausdorff locally convex topological
vector space). Recall that convexity means that
Ax+ (1 —A)y € X whenever x,y € X and 0 <
A < 1. Anextreme point of X isa point x € X such
that

x=Ay+ (1 -z

fory,zeXand 0 < A< 1 impliesthat x =y =
z, that is x is not an interior point of a line segment
in X. A function f : X — R is said to be convex if

fG) < Af() + A =Df(2)

whenever x = Ay + (1 — A)z for y,z€ X and
0 < 4 < 1. Thesubcone H of all convex functions
in C(X) symmetrically separates the points of X
(this follows from the Hahn-Banach theorem) and
contains the constants. According to the Krein-
Milman theorem its minimal boundary B is the
closure of the set of all extreme points of X.

For a concrete example let X be a closed convex
polygon in R? with the vertices P, ..., P,. Then
B = {P,,...,B,} is the Silov boundary for H and
according to Theorem 3.2 every monotone linear
functional I on H can be represented by a regular
Borel measure u on B. But the measures on the
finite set B are just linear combinations of point
evaluations &p_. If in particular the functional [ is
monotone, and therefore u-continuous, then u is a
convex combination of these point evaluations,
that is

U= ﬂl5p1 + -+ //Lndpn,
where A, ..., 4, = 0and A; + -+ A, = I(1).
Thus

=

X

fdp=Af(P)+ -+ Anf(B)
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for all f e H. For affine functions, that is
functionsin L = H n (—H), and a continuous (not
necessarily monotone) linear functional I on L we
obtain according to Corollary 3.3 a similar
representation, that is

1(f) = f fdu= A f(P) + -+ Anf (P)
X

where P, e Band 4; e Rfori =1,...,n.
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